希望这篇随笔能够从一个实用化的角度对ML中的标准化方法进行一个描述。即便是了解了标准化方法的意义,最终的最终还是要:拿来主义,能够在实践中使用。

  动机:标准化的意义是什么?

  我们为什么要标准化?想象我们有一个Data Matrix $\mathbf{X}\in \mathbb{R}^{n\times d}$ 我们首先必须要做的事情就是对这个Data Matix进行标准化,意义是:“取消由于量纲不同、自身变异或者数值相差较大所引起的误差。”这个解释还不是很明白,那么我们可以想象如果不进行标准化会发生什么。首先这个Data Matrix $\mathbf{X}$ 的每一行就代表了一个样本,我们需要利用这些样本feature之间的差异来完成我们的机器学习任务,such as regression and classification。接着我们就要使用不同的算法和模型来完成我们的任务,如果你直接对把这些raw data喂给模型。那么一个可能出现的情况就是模型参数的爆炸或者消失,同时训练速度可能会相当慢。这种情况的影响我的理解是很容易造成样本特征的模糊或者消失,虽然我们仍然能够对模型进行训练,但是效果可能非常不好。

  好了,现在我们理解了标准化的意义,那么一个可能的思索是这样的:既然我们对原始数据进行了标准化处理,那么假如来了新数据我们应该咋办?要知道我们训练模型的目的是为了泛化,我们训练了一个模型之后该对付新来的数据呢,比如:使用标准化之后的模型训练了一个分类器,现在又来了一个样本,显然它没办法直接用我们训练的模型进行分类(因为我们的模型是用标准化之后的数据处理的鸭)。我的想法是,有两种方法:1. 在对数据矩阵标准化的时候记录下标准化参数,当有新的数据喂给模型的时,先要对这个数据进行一样的标准化处理。2. 我们用标准化后的数据训练了一个模型,模型参数为$\mathbf{W}_{N}$,能够用这个模型参数倒推“不进行标准化”的模型参数$\mathbf{W}$。这样我们获得了一个trained original model。这个模型能够直接处理不进行标准化的数据。很显然,第一个方法要比第二个方法简单通用的多。

  最常用的标准化方法:Z-score and Max-Min Normalization

  wikipedia上有一个表格,记录下了标准化的方法:

Name

Formula

Use

Standard score

Normalizing errors when population parameters are known. Works well for populations that are normally distributed[2]

Student's t-statistic

the departure of the estimated value of a parameter from its hypothesized value, normalized by its standard error.

Studentized residual

Normalizing residuals when parameters are estimated, particularly across different data points in regression analysis.

Standardized moment

Normalizing moments, using the standard deviation 

 as a measure of scale.

Coefficient ofvariation

Normalizing dispersion, using the mean 

 as a measure of scale, particularly for positive distribution such as the exponential distribution and Poisson distribution.

Min-Max Feature scaling

Feature scaling is used to bring all values into the range [0,1]. This is also called unity-based normalization. This can be generalized to restrict the range of values in the dataset between any arbitrary points 

 and 

, using for example

.

  其中最最常用的两个就是Min-Max Feature scaling和Standard score(也叫Z-score),原理和功能可以点上面的链接了解,下面介绍一下实现的步骤和一些坑。

  Z-score

  按如下方法标准化Data Matirx矩阵的每一列 $\mathbf{x}_i$ of $\mathbf{X}(1\leq i\leq d)$:(这里解释一下为什么是按列标准化:数据矩阵的每一列就代表了样本的每一维,我们想通过标准化来更好的处理该维度的特征,可以想想按行标准化是什么效果:make no sense)$$z_{ij}\leftarrow \frac{x_{ij}-\text{mean}(\mathbf{x}_i)}{\text{std}(\mathbf{x}_i)}$$

  其中$x_{ij}$代表$\mathbf{x}_i$的第$j$个条目,同样的$z_{ij}$代表$\mathbf{z}_i\in \mathbb{R}^n$的第$j$个条目,$\mathbf{\overline{Z}}=(\mathbf{1},\mathbf{z}_1,\cdots,\mathbf{z}_d)\in \mathbb{R}^{n\times(d+1)}$, mean和std就是按列求每一列的均值啦,我们接下来处理$\mathbf{\overline{Z}}$这个矩阵就好了~~为什么这里会多一维呢?你可能已经知道这个多出来的一叫做dummy variable,我的理解是它一方面可以简化我们的模型表达,一方面提供了一个相当相当广义的正则化处理,降低了噪声的影响(当然这是我见过的大部分模型的需要,需要灵活处理,思想懂了就简单)。

  Min-Max Feature scaling

  这个标准化方法在我看来就非常的简单粗暴了,方式如下:$$z_{ij}\leftarrow \frac{x_{ij}-\text{min}(\mathbf{x}_i)}{\text{max}(\mathbf{x}_i)-\text{min}(\mathbf{x}_i)}$$

  其中$x_{ij}$代表$\mathbf{x}_i$的第$j$个条目,同样的$z_{ij}$代表$\mathbf{z}_i\in \mathbb{R}^n$的第$j$个条目,$\mathbf{\overline{Z}}=(\mathbf{1},\mathbf{z}_1,\cdots,\mathbf{z}_d)\in \mathbb{R}^{n\times(d+1)}$, max和min是按列求每一列的最大和最小值。

  实现中可能出现的问题:

  假如我们的数据矩阵比较稀疏,可能会出现一整列都是0的情况。此时我们发现上面两个方法的分母都为0,出现除以0的情况,这时我们该怎么办?一个比较合理的想法是假如有一整列的0,我们可以标准化后保留。一列零还让它是一列零。那么我们可以对求得的分母加上一个epsilon,也就是一个小量,1e-8这样的量级。这样一列零的情况还是一列零,$\text{std}$ 或者 $\text{max}-\text{min}$不为0的情况也不会受影响。