写在前面:大家好!我是ACfun,我的昵称来自两个单词Acceptedfun。由于最近在学习python,学了一遍感觉不是特别条理,所以我想整理一个有关python基础的系列的文章。希望自己通过这次的整理可以对python有一个较为清晰的理解和认识。如果有不足或者的错误的地方欢迎在评论区或者私信我指正,感谢大家的不吝赐教。
用知识改变命运,用知识成就未来。加油 (ง •̀o•́)ง (ง •̀o•́)ง


文章目录

  • python起源简史
  • python的起源
  • python的诞生
  • Python的特点
  • 什么是Python
  • 下载和安装Python
  • Python的开发环境

8小时Python零基础轻松入门

python起源简史

python的起源

 Python的创始人为荷兰人Guido van Rossum。1989年圣诞节期间,在阿姆斯特丹,Guido为了打发圣诞节的无趣,决心开发一个新的脚本解释程序,作为ABC 语言的一种继承。之所以选中Python(大蟒蛇的意思)作为该编程语言的名字,是取自英国20世纪70年代首播的电视喜剧《蒙提.派森的飞行马戏团》(Monty Python’s Flying Circus)。

python的起源和发展历史 python 起源_解释型语言


 ABC是由荷兰的CWI (Centrum Wiskunde & Informatica, 数学和计算机研究所)开发的。Guido在CWI工作,并参与到ABC语言的开发。ABC语言以教学为目的。与当时的大部分语言不同,ABC语言的目标是“让用户感觉更好”。ABC语言希望让语言变得容易阅读,容易使用,容易记忆,容易学习,并以此来激发人们学习编程的兴趣。

 在那个时候,他接触并使用过诸如Pascal、C、 Fortran等语言。这些语言的基本设计原则是让机器能更快运行。在80年代,虽然IBM和苹果已经掀起了个人电脑浪潮,但这些个人电脑的配置很低 (在今天看来)。比如早期的Macintosh,只有8MHz的CPU主频和128KB的RAM,一个大的数组就能占满内存。所有的编译器的核心是做优化,以便让程序能够运行。为了增进效率,语言也迫使程序员像计算机一样思考,以便能写出更符合机器口味的程序。在那个时代,程序员恨不得用手榨取计算机每一寸的能力。有人甚至认为C语言的指针是在浪费内存。至于动态类型,内存自动管理,面向对象…… 别想了,那会让你的电脑陷入瘫痪。

 然而,这种思考方式让Guido感到苦恼。Guido知道如何用C语言写出一个功能,但整个编写过程需要耗费大量的时间 (即使他已经准确的知道了如何实现)。他的另一个选择是shell。Bourne Shell作为UNIX系统的解释器(interpreter)已经长期存在。UNIX的管理员们常常用shell去写一些简单的脚本,以进行一些系统维护的工作,比如定期备份、文件系统管理等等shell可以像胶水一样,将UNIX下的许多功能连接在一起。许多C语言下上百行的程序,在shell下只用几行就可以完成。然而,shell的本质是调用命令。它并不是一个真正的语言。比如说,shell没有数值型的数据类型,加法运算都很复杂。总之,shell不能全面的调动计算机的功能。

 Guido希望有一种语言,这种语言能够像C语言那样,能够全面调用计算机的功能接口,又可以像shell那样,可以轻松的编程。ABC语言让Guido看到希望。就这样,Python在Guido手中诞生了。可以说,Python是从ABC发展起来,主要受到了Modula-3(另一种相当优美且强大的语言,为小型团体所设计的)的影响。并且结合了Unix shell和C的习惯。


python的诞生

1991年,第一个Python编译器(同时也是解释器)诞生。它是用C语言实现的,并能够调用C库(.so文件)。从一出生,Python已经具有了:类(class),函数(function),异常处理(exception),包括表(list)和词典(dictionary)在内的核心数据类型,以及模块(module)为基础的拓展系统。


Python的特点

什么是Python

 当看书或者教学视频的时候,我们经常会看到Python是一门跨平台、开源、免费的解释型高级动态编程语言。其实Python的特点还有很多很多:

  • 高级

 Python有像C++、java一样的高级的数据结构,这样就减少了以前“框架”开发需要的时间。像 Python 中的列表(大小可变的数组)和字典(哈希表)就是内建于语言本身的。在核心语言中提供这些重要的构建单元,可以鼓励人们使用它们,缩短开发时间与代码量,产生出可读性更好的代码。

  • 面向对象

 面向对象编程为数据和逻辑相分离的结构化和过程化编程添加了新的活力。面向对象编程支持将特定的行为、特性以及功能与它们要处理或所代表的数据结合在一起。Python 的面向对象的特性是与生俱来的

  • 可升级

 Python 提供了基本的开发模块,你可以在它上面开发你的软件,而且当这些需要扩展和增长时,Python 的可插入性模块化架构则能使你的项目生机盎然和易于管理。

  • 可扩展

 Python具有高可扩展性,存在许多使用 C 语言或 Fortran 编写扩展的方法。必要时,Python 代码可以直接将这些扩展作为子例程来调用。

  • 可移植性

 在各种不同的系统上可以看到 Python 的身影,这是由于在今天的计算机领域,Python 取得了持续快速的成长。因为 Python 是用 C 写的,又由于 C 的可移植性,使得 Python 可以运行在任何带有 ANSIC 编译器的平台上。尽管有一些针对不同平台开发的特有模块,但是在任何一个平台上用 Python 开发的通用软件都可以稍事修改或者原封不动的在其他平台上运行。这种可移植性既适用于不同的架构,也适用于不同的操作系统。

  • 易学易读易维护

Python关键字少、结构简单、语法清晰。这样就使得学习者可以在相对更短的时间内轻松上手。Python 与其他语言显著的差异是,它没有其他语言通常用来访问变量、定义代码块和进行模式匹配的命令式符号。通常这些符号包括:美元符号($)、分号(;)、波浪号(~)等等。这样的设计使得 Python代码变得更加定义清晰和易于阅读。因为 Python 本身就是易于学习和阅读的。所以维护起来便更简单一些。

  • 健壮性

Python 提供了“安全合理”的退出机制,让程序员能掌控局面。一旦你的 Python 由于错误崩溃,解释程序就会转出一个“堆栈跟踪”,那里面有可用到的全部信息,包括你程序崩溃的原因以及是那段代码(文件名、行数、行数调用等等)出错了。这些错误被称为异常。如果在运行时发生这样的错误,Python 使你能够监控这些错误并进行处理。
 这些异常处理可以采取相应的措施,例如解决问题、重定向程序流、执行清除或维护步骤、正常关闭应用程序、亦或干脆忽略掉。无论如何,这都可以有效的缩减开发周期中的调试环节。Python的健壮性对软件设计师和用户而言都是大有助益的。一旦某些错误处理不当,Python 也能提供一些信息,作为某个错误结果而产生的堆栈追踪不仅可以描述错误的类型和位置,还能指出代码所在模块。

  • 高效的快速原型开发工具

 Python 有许多面向其他系统的接口,它的功能足够强大,本身也足够强壮,所以完全可以使用 Python 开发整个系统的原型。Python有完备的标准库也有很多第三方扩展库,这些使得我们可以更加快速的开发出系统。

  • 内存管理器

 在 Python 中,由于内存管理是由 Python 解释器负责的,所以开发人员就可以从内存事务中解放出来,全神贯注于最直接的目标,仅仅致力于开发计划中首要的应用程序。这会使错误更少、程序更健壮、开发周期更短。

  • 解释性和(字节)编译性

 计算机是不能理解高级语言的,更不能直接执行高级语言,它只能直接理解机器语言,所以使用任何高级语言编写的程序若想被计算机运行,都必须将其转换成计算机语言,也就是机器码。而这种转换的方式有两种:编译、解释。

编译型:在编译型语言写的程序执行之前,需要一个专门的编译过程,把源代码编译成机器语言的文件,如exe格式的文件,以后要再运行时,直接使用编译结果即可,如直接运行exe文件。因为只需编译一次,以后运行时不需要编译,所以编译型语言执行效率高。比如C语言、C++等为编译型语言。编译型语言的执行过程:源代码 ——>编译——>目标代码——>执行——>输出。比如C语言的编译过程中生成的文件为.c源文件——>.obj目标文件——>.exe可执行文件
解释型:解释型语言不需要事先编译,其直接将源代码解释成机器码并立即执行,所以只要某一平台提供了相应的解释器即可运行该程序。解释型语言每次运行都需要将源代码解释称机器码并执行,效率较低;只要平台提供相应的解释器,就可以运行源代码,所以可以方便源程序移植。Python、java、JavaScript 、Shell等都是解释型语言。解释型语言执行过程:源代码 ——>解释器——>输出。

 Python 是一种解释型语言,这意味着开发过程中没有了编译这个环节。一般来说,由于不是以本地机器码运行,纯粹的解释型语言通常比编译型语言运行的慢。然而,类似于 Java,Python实际上是字节编译的,其结果就是可以生成一种近似机器语言的中间形式。这不仅改善了 Python的性能,还同时使它保持了解释型语言的优点。


下载和安装Python

 Python的下载请到Python官网,安装教程这里就不再赘述了。百度一下有很多教程,也可以看小破站上的教程。

Python的开发环境

默认编程环境:

  • IDLE

其他编程环境

  • pycharm
  • eclipse + PyDev
  • anaconda3
  • PythonWin
    等等。