文章目录

  • 1.Java锁之公平锁和非公平锁
  • 2.java锁之可重入锁和递归锁理论知识
  • 3.java锁之可重入锁和递归锁代码验证
  • 4.java锁之自旋锁理论知识
  • 5.java锁之自旋锁代码验证
  • 6.java锁之读写锁理论知识
  • 7.java锁之读写锁代码验证


1.Java锁之公平锁和非公平锁

概念
公平锁:是指多个线程按照申请锁的顺序来获取锁,类似于排队买饭,先来后到,先来先服务,就是公平的,也就是队列
非公平锁:是指多个线程获取锁的顺序,并不是按照申请锁的顺序,有可能申请的线程比先申请的线程优先获取锁,在高并发环境下,有可能造成优先级翻转,或者饥饿的线程(也就是某个线程一直得不到锁)
如何创建
并发包中ReentrantLock的创建可以指定析构函数的boolean类型来得到公平锁或者非公平锁,默认是非公平锁

/**
* 创建一个可重入锁,true 表示公平锁,false 表示非公平锁。默认非公平锁
*/
Lock lock = new ReentrantLock(true);

两者区别
公平锁: 就是很公平,在并发环境中,每个线程在获取锁时会先查看此锁维护的等待队列,如果为空,或者当前线程是等待队列中的第一个,就占用锁,否者就会加入到等待队列中,以后安装FIFO的规则从队列中取到自己
非公平锁: 非公平锁比较粗鲁,上来就直接尝试占有锁,如果尝试失败,就再采用类似公平锁那种方式。
题外话:
Java ReenttrantLock通过构造函数指定该锁是否公平,默认是非公平锁,因为非公平锁的优点在于吞吐量比公平锁大,对于synchronized而言,也是一种非公平锁

2.java锁之可重入锁和递归锁理论知识

可重入锁 也叫做递归锁:
指的是同一线程外层函数获得锁之后,内层递归函数仍然能获取该锁的代码,在同一个线程在外层方法获取锁的时候,在进入内层方法会自动获取锁。

也即是说,线程可以进入任何一个它已经拥有的锁所同步着的代码块。

ReentrantLock/synchronized就是一个典型的可重入锁。
代码

可重入锁就是,在一个method1方法中加入一把锁,方法2也加锁了,那么他们拥有的是同一把锁

public synchronized void method1() {
	method2();
}
public synchronized void method2() {

}

也就是说我们只需要进入method1后,那么它也能直接进入method2方法,因为他们所拥有的锁,是同一把。
作用
可重入锁最大的作用是避免死锁。

3.java锁之可重入锁和递归锁代码验证

Synchronized可入锁演示程序

class Phone {

    public synchronized void sendSMS() throws Exception{
        System.out.println(Thread.currentThread().getName() + "\t invoked sendSMS()");

        // 在同步方法中,调用另外一个同步方法
        sendEmail();
    }


    public synchronized void sendEmail() throws Exception{
        System.out.println(Thread.currentThread().getId() + "\t invoked sendEmail()");
    }
}

public class SynchronizedReentrantLockDemo {

	public static void main(String[] args) {
        Phone phone = new Phone();

        // 两个线程操作资源列
        new Thread(() -> {
            try {
                phone.sendSMS();
            } catch (Exception e) {
                e.printStackTrace();
            }
        }, "t1").start();

        new Thread(() -> {
            try {
                phone.sendSMS();
            } catch (Exception e) {
                e.printStackTrace();
            }
        }, "t2").start();
	}

}

输出结果

t1	 invoked sendSMS()
11	 invoked sendEmail()
t2	 invoked sendSMS()
12	 invoked sendEmail()
这就说明当 t1 线程进入sendSMS的时候,拥有了一把锁,同时t2线程无法进入,直到t1线程拿着锁,执行了sendEmail 方法后,才释放锁,这样t2才能够进入

ReentrantLock可重入锁演示程序

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

class Phone2 implements Runnable{

    Lock lock = new ReentrantLock();

    /**
     * set进去的时候,就加锁,调用set方法的时候,能否访问另外一个加锁的set方法
     */
    public void getLock() {
        lock.lock();
        try {
            System.out.println(Thread.currentThread().getName() + "\t get Lock");
            setLock();
        } finally {
            lock.unlock();
        }
    }

    public void setLock() {
        lock.lock();
        try {
            System.out.println(Thread.currentThread().getName() + "\t set Lock");
        } finally {
            lock.unlock();
        }
    }

    @Override
    public void run() {
        getLock();
    }
}

public class ReentrantLockDemo {


    public static void main(String[] args) {
        Phone2 phone = new Phone2();

        /**
         * 因为Phone实现了Runnable接口
         */
        Thread t3 = new Thread(phone, "t3");
        Thread t4 = new Thread(phone, "t4");
        t3.start();
        t4.start();
    }
}

输出结果为:

t3	 get Lock
t3	 set Lock
t4	 get Lock	
t4	 set Lock

4.java锁之自旋锁理论知识

自旋锁: spinlock,是指尝试获取锁的线程不会立即阻塞,而是采用循环的方式去尝试获取锁,这样的好处是减少线程上下文切换的消耗,缺点是循环会消耗CPU

原来提到的CAS比较并交换,底层使用的就是自旋,自旋就是多次尝试,多次访问,不会阻塞的状态就是自旋。

提到了互斥同步对性能最大的影响阻塞的实现,挂起线程和恢复线程的操作都需要转入内核态完成,这些操作给系统的并发性能带来了很大的压力。同时,虚拟机的开发团队也注意到在许多应用上,共享数据的锁定状态只会持续很短的一段时间,为了这段时间去挂起和恢复线程并不值得。如果物理机器有一个以上的处理器,能让两个或以上的线程同时并行执行,我们就可以让后面请求锁的那个线程
“稍等一下”,但不放弃处理器的执行时间,看看持有锁的线程是否很快就会释放锁。为了让线程等待,我们只需让线程执行一个忙循环(自旋),这项技术就是所谓的自旋锁。
《深入理解JVM.2nd》Page 398

java 原理 非公平锁 java公平锁的实现方式_后端

5.java锁之自旋锁代码验证

import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicReference;

public class SpinLockDemo {
    // 现在的泛型装的是Thread,原子引用线程
    AtomicReference<Thread>  atomicReference = new AtomicReference<>();

    public void myLock() {
        // 获取当前进来的线程
        Thread thread = Thread.currentThread();
        System.out.println(Thread.currentThread().getName() + "\t come in ");

        // 开始自旋,期望值是null,更新值是当前线程,如果是null,则更新为当前线程,否者自旋
        while(!atomicReference.compareAndSet(null, thread)) {
			//摸鱼
        }
    }

    public void myUnLock() {
        // 获取当前进来的线程
        Thread thread = Thread.currentThread();

        // 自己用完了后,把atomicReference变成null
        atomicReference.compareAndSet(thread, null);

        System.out.println(Thread.currentThread().getName() + "\t invoked myUnlock()");
    }
    
	public static void main(String[] args) {
        SpinLockDemo spinLockDemo = new SpinLockDemo();

        // 启动t1线程,开始操作
        new Thread(() -> {

            // 开始占有锁
            spinLockDemo.myLock();

            try {
                TimeUnit.SECONDS.sleep(5);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }

            // 开始释放锁
            spinLockDemo.myUnLock();

        }, "t1").start();


        // 让main线程暂停1秒,使得t1线程,先执行
        try {
            TimeUnit.SECONDS.sleep(1);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }

        // 1秒后,启动t2线程,开始占用这个锁
        new Thread(() -> {

            // 开始占有锁
            spinLockDemo.myLock();
            // 开始释放锁
            spinLockDemo.myUnLock();

        }, "t2").start();
	}
}

输出结果
通过CAS操作完成自旋锁,A线程先进来调用myLock方法自己持有锁5秒,B随后进来发现当前有线程持有锁,不是null,所以只能通过自旋等待,直到A释放锁后B随后抢到

t1	 come in 
t2	 come in 
t1	 invoked myUnlock()
t2	 invoked myUnlock()

首先输出的是 t1 come in

然后1秒后,t2线程启动,发现锁被t1占有,所有不断的执行 compareAndSet方法,来进行比较,直到t1释放锁后,也就是5秒后,t2成功获取到锁,然后释放

6.java锁之读写锁理论知识

独占锁:指该锁一次只能被一个线程所持有。对ReentrantLock和Synchronized而言都是独占锁

共享锁:指该锁可被多个线程所持有。

多个线程同时读一个资源类没有任何问题,所以为了满足并发量,读取共享资源应该可以同时进行。但是,如果有一个线程想去写共享资源来,就不应该再有其它线程可以对该资源进行读或写。

ReentrantReadWriteLock其读锁是共享锁,其写锁是独占锁。
为什么会有写锁和读锁

原来我们使用ReentrantLock创建锁的时候,是独占锁,也就是说一次只能一个线程访问,但是有一个读写分离场景,读的时候想同时进行,因此原来独占锁的并发性就没这么好了,因为读锁并不会造成数据不一致的问题,因此可以多个人共享读

多个线程同时读一个资源类没有任何问题,所以为了满足并发量,读取共享资源应该可以同时进行,但是如果一个线程想去写共享资源,就不应该再有其它线程可以对该资源进行读或写

读锁的共享锁可保证并发读是非常高效的,读写,写读,写写的过程是互斥的。
写的时候只能一个人写,但是读的时候,可以多个人同时读
读-读:能共存
读-写:不能共存
写-写:不能共存

7.java锁之读写锁代码验证

实现一个读写缓存的操作,假设开始没有加锁的时候,会出现什么情况

import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.TimeUnit;

class MyCache {

    private volatile Map<String, Object> map = new HashMap<>();

    public void put(String key, Object value) {
        System.out.println(Thread.currentThread().getName() + "\t 正在写入:" + key);
        try {
            // 模拟网络拥堵,延迟0.3秒
            TimeUnit.MILLISECONDS.sleep(300);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        map.put(key, value);
        System.out.println(Thread.currentThread().getName() + "\t 写入完成");
    }

    public void get(String key) {
        System.out.println(Thread.currentThread().getName() + "\t 正在读取:");
        try {
            // 模拟网络拥堵,延迟0.3秒
            TimeUnit.MILLISECONDS.sleep(300);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        Object value = map.get(key);
        System.out.println(Thread.currentThread().getName() + "\t 读取完成:" + value);
    }
}

public class ReadWriteWithoutLockDemo {

	public static void main(String[] args) {
        MyCache myCache = new MyCache();
        // 线程操作资源类,5个线程写
        for (int i = 0; i < 5; i++) {
            final int tempInt = i;
            new Thread(() -> {
                myCache.put(tempInt + "", tempInt +  "");
            }, String.valueOf(i)).start();
        }
        
        // 线程操作资源类, 5个线程读
        for (int i = 0; i < 5; i++) {
            final int tempInt = i;
            new Thread(() -> {
                myCache.get(tempInt + "");
            }, String.valueOf(i)).start();
        }

	}

}

输出结果

0	 正在写入:0
1	 正在写入:1
3	 正在写入:3
2	 正在写入:2
4	 正在写入:4
0	 正在读取:
1	 正在读取:
2	 正在读取:
4	 正在读取:
3	 正在读取:
1	 写入完成
4	 写入完成
0	 写入完成
2	 写入完成
3	 写入完成
3	 读取完成:3
0	 读取完成:0
2	 读取完成:2
1	 读取完成:null
4	 读取完成:null

我们可以看到,在写入的时候,写操作都没其它线程打断了,这就造成了,还没写完,其它线程又开始写,这样就造成数据不一致
解决方法
上面的代码是没有加锁的,这样就会造成线程在进行写入操作的时候,被其它线程频繁打断,从而不具备原子性,这个时候,我们就需要用到读写锁来解决了

/**
* 创建一个读写锁
* 它是一个读写融为一体的锁,在使用的时候,需要转换
*/
private ReentrantReadWriteLock rwLock = new ReentrantReadWriteLock();

当我们在进行写操作的时候,就需要转换成写锁

// 创建一个写锁
rwLock.writeLock().lock();
// 写锁 释放
rwLock.writeLock().unlock();

当们在进行读操作的时候,在转换成读锁

// 创建一个读锁
rwLock.readLock().lock();
// 读锁 释放
rwLock.readLock().unlock();

这里的读锁和写锁的区别在于,写锁一次只能一个线程进入,执行写操作,而读锁是多个线程能够同时进入,进行读取的操作
完整代码:

package com.lun.concurrency;

import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.ReentrantReadWriteLock;

class MyCache2 {

    private volatile Map<String, Object> map = new HashMap<>();

    private ReentrantReadWriteLock rwLock = new ReentrantReadWriteLock();

    public void put(String key, Object value) {

        // 创建一个写锁
        rwLock.writeLock().lock();

        try {

            System.out.println(Thread.currentThread().getName() + "\t 正在写入:" + key);

            try {
                // 模拟网络拥堵,延迟0.3秒
                TimeUnit.MILLISECONDS.sleep(300);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }

            map.put(key, value);

            System.out.println(Thread.currentThread().getName() + "\t 写入完成");

        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            // 写锁 释放
            rwLock.writeLock().unlock();
        }
    }

    public void get(String key) {

        // 读锁
        rwLock.readLock().lock();
        try {

            System.out.println(Thread.currentThread().getName() + "\t 正在读取:");

            try {
                // 模拟网络拥堵,延迟0.3秒
                TimeUnit.MILLISECONDS.sleep(300);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }

            Object value = map.get(key);

            System.out.println(Thread.currentThread().getName() + "\t 读取完成:" + value);

        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            // 读锁释放
            rwLock.readLock().unlock();
        }
    }

    public void clean() {
        map.clear();
    }


}

public class ReadWriteWithLockDemo {
    public static void main(String[] args) {

        MyCache2 myCache = new MyCache2();

        // 线程操作资源类,5个线程写
        for (int i = 1; i <= 5; i++) {
            // lambda表达式内部必须是final
            final int tempInt = i;
            new Thread(() -> {
                myCache.put(tempInt + "", tempInt +  "");
            }, String.valueOf(i)).start();
        }

        // 线程操作资源类, 5个线程读
        for (int i = 1; i <= 5; i++) {
            // lambda表达式内部必须是final
            final int tempInt = i;
            new Thread(() -> {
                myCache.get(tempInt + "");
            }, String.valueOf(i)).start();
        }
    }
}

输出结果

1	 正在写入:1
1	 写入完成
2	 正在写入:2
2	 写入完成
3	 正在写入:3
3	 写入完成
5	 正在写入:5
5	 写入完成
4	 正在写入:4
4	 写入完成
2	 正在读取:
3	 正在读取:
1	 正在读取:
5	 正在读取:
4	 正在读取:
3	 读取完成:3
2	 读取完成:2
1	 读取完成:1
5	 读取完成:5
4	 读取完成:4

从运行结果我们可以看出,写入操作是一个一个线程进行执行的,并且中间不会被打断,而读操作的时候,是同时5个线程进入,然后并发读取操作