标签:

一、准备工作

 (1)Hadoop2.7.2 在linux部署完毕,成功启动dfs和yarn,通过jps查看,进程都存在

 (2)安装maven

二、最终效果

 在windows系统中,直接通过Run as Java Application运行wordcount,而不需要先打包成jar包,然后在linux终端运行

三,操作步骤

 1、启动dfs和yarn

终端:${HADOOP_HOME}/sbin/start-dfs.sh
    ${HADOOP_HOME}/sbin/start-yarn.sh

 

通过在namenode节点上jps查看显示:
  4852 NameNode
   5364 ResourceManager
   5141 SecondaryNameNode
   10335 Jps  在datanode节点上使用jps查看显示:
  10369 Jps
   4852 NameNode
   5364 ResourceManager
   5141 SecondaryNameNode

 2、Eclipse基础配置

  (1)将hadoop-eclipse-plugin-2.7.2.jar插件下载,放在Eclipse的目录下的plugins目录下,启动Eclipse,然后点击查看Hadoop插件是否生效,点击windows——>preferences,如下图1

    

  (2)将hadoop-2.7.2的解压包添加到2所示的目录,点击OK

 3、Eclipse创建maven工程

  (1)创建过程省略

  (2)添加dependency,POM.xml中的依赖项如下:

  hadoop-common

  hadoop-hdfs

  hadoop-mapreduce-client-core

      hadoop-mapreduce-client-common  


<!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-common -->
    <dependency>
        <groupId>org.apache.hadoop</groupId>
        <artifactId>hadoop-common</artifactId>
        <version>2.7.2</version>
    </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-hdfs -->
    <dependency>
        <groupId>org.apache.hadoop</groupId>
        <artifactId>hadoop-hdfs</artifactId>
        <version>2.7.2</version>
    </dependency>
    <!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-mapreduce-client-core -->
    <dependency>
        <groupId>org.apache.hadoop</groupId>
        <artifactId>hadoop-mapreduce-client-core</artifactId>
        <version>2.7.2</version>
    </dependency>
    <!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-mapreduce-client-common -->
    <dependency>
        <groupId>org.apache.hadoop</groupId>
        <artifactId>hadoop-mapreduce-client-common</artifactId>
        <version>2.7.2</version>
    </dependency>


 

   (3)此时可能会卡顿一段时间,Build workpath如果特别慢的话,请参考我前不久的一篇解决方法,等到maven中的依赖包下载install完毕即可

 4、编写mapreduce中的wordcount代码

  代码此处不在累述,,简单代码架构(红色框的那个包)和内容如下:

        

  WCMapper类:  




hadoop native包在哪个位置_hadoop native包在哪个位置

package cn.edu.nupt.hadoop.mr.wordcount;

import java.io.IOException;

import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

// 4个泛型中,前两个是指定的mapper输入数据的类型
//map 和 reduce 的数据输入输出是以key-value的形式封装的
//默认情况下,框架传递给我们的mapper的输入数据中,key是要处理的文本中一行的其实偏移量,这一行的内容作为value
// JDK 中long string等使用jdk自带的序列化机制,序列化之后会携带很多附加信息,造成网络传输冗余,
//        所以Hadoop自己封装了一些序列化机制
public class WCMapper extends Mapper<LongWritable, Text, Text, LongWritable>{
    
    // mapreduce框架每读一行就调用一次该方法
    @Override
    protected void map(LongWritable key, Text value,Context context)
            throws IOException, InterruptedException {
        //具体的业务写在这个方法中,而且我们业务要处理的数据已经被该框架传递进来
        // key是这一行的其实偏移量,value是文本内容
        String line = value.toString();
        
        String[] words = StringUtils.split(line, " ");
        
        for(String word : words){
            
            context.write(new Text(word), new LongWritable(1));      
        }      
    } 
}


View Code

  WCReducer类: 




hadoop native包在哪个位置_hadoop native包在哪个位置

package cn.edu.nupt.hadoop.mr.wordcount;

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class WCReducer extends Reducer<Text, LongWritable, Text, LongWritable>{
    
    // 框架在map处理完成之后,将所有的kv对缓存起来,进行分组,然后传递一个组
    // <key,{value1,value2...valuen}>
    //<hello,{1,1,1,1,1,1.....}>
    @Override
    protected void reduce(Text key, Iterable<LongWritable> values,Context context)
            throws IOException, InterruptedException {

        long count = 0;
        for(LongWritable value:values){
            
            count += value.get();
        }
        context.write(key, new LongWritable(count));
    }
}


View Code

  WCRunner类




hadoop native包在哪个位置_hadoop native包在哪个位置

package cn.edu.nupt.hadoop.mr.wordcount;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
/**
 * 
 *<p> WCRunner.java
 *    Description:<br/> 
 *    (1)用来描述一个作业<br/>
 *    (2)比如,该作业使用哪个类作为逻辑处理中的map,哪个作为reduce
 *    (3)还可以指定改作业要处理的数据所在的路径
 *    (4)还可以指定作业输出的路径
 *<p>
 *    Company: cstor
 *
 *    @author zhuxy
 *    2016年8月4日 下午9:58:02
 */
public class WCRunner {

    public static void main(String[] args) throws Exception {
        
        Configuration conf = new Configuration();
        
        Job wcjob = Job.getInstance(conf);
        
        // 找到Mapper和Reducer两个类所在的路径
        //设置整个job所用的那些类在哪个jar下
        wcjob.setJarByClass(WCRunner.class);
        
        //本job使用的mapper和reducer类
        wcjob.setMapperClass(WCMapper.class);
        wcjob.setReducerClass(WCReducer.class);
        
        //指定reduce的输出数据kv类型
        wcjob.setOutputKeyClass(Text.class);
        wcjob.setOutputValueClass(LongWritable.class);
        
        // 指定map的输出数据的kv类型
        wcjob.setMapOutputKeyClass(Text.class);
        wcjob.setMapOutputValueClass(LongWritable.class);
        
//        
//        FileInputFormat.setInputPaths(wcjob, new Path("hdfs://master:9000/wc/input/testHdfs.txt"));
//        FileOutputFormat.setOutputPath(wcjob, new Path("hdfs://master:9000/wc/output7/"));

        FileInputFormat.setInputPaths(wcjob, new Path("file:///E:/input/testwc.txt"));
        FileOutputFormat.setOutputPath(wcjob, new Path("file:///E:/output3/"));
        
        wcjob.waitForCompletion(true);
    }
}


View Code

 

  此时代码张贴完毕。

 5、在CentOS的本地创建一个文件,命名为testHdfs.txt(这个是我之前的测试文件,内容不重要,名字不重要,一致即可),内容如下:

    hello java

    hello Hadoop

    hello world

  创建好后,将文件上传到hdfs文件系统的/wc/input文件夹下面

  hadoop fs -put ./testHdfs.txt /wc/input

 6、在WCRunner类中,右击Run as -->Java Application,出现如下错误:

log4j:WARN No appenders could be found for logger (org.apache.hadoop.metrics2.lib.MutableMetricsFactory).
  log4j:WARN Please initialize the log4j system properly.
  log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.
  Exception in thread "main" java.lang.NullPointerException
      at java.lang.ProcessBuilder.start(ProcessBuilder.java:1012)
      at org.apache.hadoop.util.Shell.runCommand(Shell.java:483)
      at org.apache.hadoop.util.Shell.run(Shell.java:456)
      at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:722)
      at org.apache.hadoop.util.Shell.execCommand(Shell.java:815)
      at org.apache.hadoop.util.Shell.execCommand(Shell.java:798)

    ……

   at org.apache.hadoop.mapreduce.Job.waitForCompletion(Job.java:1308)
     at cn.edu.nupt.hadoop.mr.wordcount.WCRunner.main(WCRunner.java:55)

  解决办法:参考:eclipse Run on Hadoop java.lang.NullPointerException

  方法:在Hadoop的bin目录下放winutils.exe,在环境变量中配置 HADOOP_HOME,把hadoop.dll拷贝到C:\Windows\System32下面即可

    注:此处最好将HADOOP_HOME/bin目录添加到path中,这样可以运行本地模式,即是上述代码中注释的部分

  两个文件的下载地址:win10下hadoo2.7.2的hadoop.dll和winutils.exe  

 7、此时再次运行Run as -->Java Application,出现问题如下:  

log4j:WARN No appenders could be found for logger (org.apache.hadoop.metrics2.lib.MutableMetricsFactory).
  log4j:WARN Please initialize the log4j system properly.
  log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.

 文件夹创建成功,但是文件夹下面没有success 和 运行结果part*文件,即/wc/output3下面没内容(输出结果)。

  解决办法:点击windows-->perspective-->open perspective-->other-->MapReduce,Eclipse界面效果如下:

      

  并且在底部出现MapReduce Locations,效果如下:

    

  此时右击黄色的Map/Reduce Locations,选择New Had*,然后编辑如下,

    

编辑结束点击finish。再次运行Run as -->Java Application,出现想要的结果了,如图:

      

  该图出现基本代表运行成功,没问题。但是发现MapReduce程序运行的计数器等信息没有打印在控制台,控制台只打印了log4j三行信息。解决方法见第8条

 8、解决将输出的信息打印到Console上。

  参考:Eclipse中运行MapReduce程序时控制台无法打印进度信息的问题

  这种情况一般是由于log4j这个日志信息打印模块的配置信息没有给出造成的,可以在项目的src目录下,新建一个文件,命名为“log4j.properties”,填入以下信息:


log4j.rootLogger=INFO, stdout  
    log4j.appender.stdout=org.apache.log4j.ConsoleAppender  
    log4j.appender.stdout.layout=org.apache.log4j.PatternLayout  
    log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n  
    log4j.appender.logfile=org.apache.log4j.FileAppender  
    log4j.appender.logfile.File=target/spring.log  
    log4j.appender.logfile.layout=org.apache.log4j.PatternLayout  
    log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n


 

     

 9、此时,所有的问题解决

 (1)控制台打印信息

2016-08-05 00:56:45,209 INFO [org.apache.hadoop.conf.Configuration.deprecation] - session.id is deprecated. Instead, use dfs.metrics.session-id
  2016-08-05 00:56:45,211 INFO [org.apache.hadoop.metrics.jvm.JvmMetrics] - Initializing JVM Metrics with processName=JobTracker, sessionId=
  2016-08-05 00:56:45,856 WARN [org.apache.hadoop.mapreduce.JobResourceUploader] - Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
  2016-08-05 00:56:45,918 WARN [org.apache.hadoop.mapreduce.JobResourceUploader] - No job jar file set.  User classes may not be found. See Job or Job#setJar(String).
  2016-08-05 00:56:45,976 INFO [org.apache.hadoop.mapreduce.lib.input.FileInputFormat] - Total input paths to process : 1

 (2)/wc/outputn/part*输出的信息

    Hadoop    1
    hello   3

    java  1
    world    1

  至此成功实现。