无迹卡尔曼滤波不同于扩展卡尔曼滤波,它是概率密度分布的近似,由于没有将高阶项忽略,所以在求解非线性时精度较高。
UT变换的核心思想:近似一种概率分布比近似任意一个非线性函数或非线性变换要容易。
原理:
假设n维随机向量x:N(x均值,Px),x通过非线性函数y=f(x)变换后得到n维的随机变量y。通过UT变换可以比较高的精度和较低的计算复杂度求得y的均值和方差Px。
UT的具体过程如下:
(1)计算2n+1个Sigma点及其权值:
根号下为矩阵平方根的第i列
依次为均值、方差的权值
式中:
α决定Sigma点的散步程度,通常取一小的正值;k通常取0;β用来描述x的分布信息,高斯情况下,β的最优值为2。
(2)计算Sigma点通过非线性函数f()的结果:
从而得知
由于x的均值和方差都精确到二阶,计算得到y的均值和方差也精确到二阶,比线性化模型精度更高。