Java源文件(.java文件)通过Java编译器(javac.exe)Java字节码(.class文件),通过Java虚拟机在内存中运行。Java虚拟机中Java字节码通过类加载器(Class Loader)为程序的执行加载所需的全部类。在类的加载过程中,由于是按照先加载启动类库、再加载扩展类库最后加载用户自定义类库的顺序,从而避免一些非法代码的执行,提高代码执行的安全性。

随后,字节码校验器对加载的字节码进行校验,以测试代码段格式,并进行规制检查,如:违反对象访问权限或试图改变对象类型的非法代码。这样可以保证代码符合JVM规范并且不破坏系统的完整性。

通过字节码校验的代码随后被送到解释器一条一条翻译成本地机器代码,在本地操作系统执行。早起的虚拟机是解释一条字节码为机器码后,马上执行再丢掉,然后再解释下一条字节码。但是,很显然这样的效率太低。于是SUN引入了即时编译器(Just in time compiler,缩写为JIT),用JIT编译器在每段代码执行前先将其进行编译为本地机器码,这样执行效率就有了质的提高。

Java类库由一堆Java类打包在一起组成的库,封装类方便使用。

Java类加载机制

1.概述

Class文件由类装载器装载后,在JVM中将形成一份描述Class结构的元信息对象,通过该元信息对象可以获知Class的结构信息:如构造函数,属性和方法等,Java允许用户借由这个Class相关的元信息对象间接调用Class对象的功能。

虚拟机把描述类的数据从class文件加载到内存,并对数据进行校验,转换解析和初始化,最终形成可以被虚拟机直接使用的Java类型,这就是虚拟机的类加载机制。

2.工作机制

类装载器就是寻找类的字节码文件,并构造出类在JVM内部表示的对象组件。在Java中,类装载器把一个类装入JVM中,要经过以下步骤:

(1) 装载:查找和导入Class文件;

(2) 链接:把类的二进制数据合并到JRE中;

(a)校验:检查载入Class文件数据的正确性;

(b)准备:给类的静态变量分配存储空间;

(c)解析:将符号引用转成直接引用;

(3) 初始化:对类的静态变量,静态代码块执行初始化操作;

类初始化

(1) 遇到new、getstatic、putstatic或invokestatic这4条字节码指令时,如果类没有进行过初始化,则需要先触发其初始化。生成这4条指令的最常见的Java代码场景是:使用new关键字实例化对象的时候,读取或设置一个类的静态字段(被final修饰、已在编译期把结果放入常量池的静态字段除外)的时候,以及调用一个类的静态方法的时候。

(2) 使用java.lang.reflect包的方法对类进行反射调用的时候,如果类没有进行过初始化,则需要先触发其初始化。

(3) 当初始化一个类的时候,如果发现其父类还没有进行过初始化,则需要先触发其父类的初始化。

(4)当虚拟机启动时,用户需要指定一个要执行的主类(包含main()方法的那个类),虚拟机会先初始化这个主类。

只有上述四种情况会触发初始化,也称为对一个类进行主动引用,除此以外,所有其他方式都不会触发初始化,称为被动引用。

在装载阶段,虚拟机需要完成以下3件事情

(1) 通过一个类的全限定名来获取定义此类的二进制字节流

(2) 将这个字节流所代表的静态存储结构转化为方法区的运行时数据结构

(3) 在Java堆中生成一个代表这个类的java.lang.Class对象,作为方法区这些数据的访问入口。

虚拟机规范中并没有准确说明二进制字节流应该从哪里获取以及怎样获取,这里可以通过定义自己的类加载器去控制字节流的获取方式。

验证

虚拟机如果不检查输入的字节流,对其完全信任的话,很可能会因为载入了有害的字节流而导致系统奔溃。

准备

准备阶段是正式为类变量分配并设置类变量初始值的阶段,这些内存都将在方法区中进行分配,需要说明的是:

这时候进行内存分配的仅包括类变量(被static修饰的变量),而不包括实例变量,实例变量将会在对象实例化时随着对象一起分配在Java堆中;这里所说的初始值“通常情况”是数据类型的零值。

类加载器

(1) Bootstrap ClassLoader : 将存放于\lib目录中的,或者被-Xbootclasspath参数所指定的路径中的,并且是虚拟机识别的(仅按照文件名识别,如 rt.jar 名字不符合的类库即使放在lib目录中也不会被加载)类库加载到虚拟机内存中。启动类加载器无法被Java程序直接引用

(2) Extension ClassLoader : 将\lib\ext目录下的,或者被java.ext.dirs系统变量所指定的路径中的所有类库加载。开发者可以直接使用扩展类加载器。

(3) Application ClassLoader : 负责加载用户类路径(ClassPath)上所指定的类库,开发者可直接使用。

工作过程:如果一个类加载器接收到了类加载的请求,它首先把这个请求委托给他的父类加载器去完成,每个层次的类加载器都是如此,因此所有的加载请求都应该传送到顶层的启动类加载器中,只有当父加载器反馈自己无法完成这个加载请求(它在搜索范围中没有找到所需的类)时,子加载器才会尝试自己去加载。

好处:java类随着它的类加载器一起具备了一种带有优先级的层次关系。例如类java.lang.Object,它存放在rt.jar中,无论哪个类加载器要加载这个类,最终都会委派给启动类加载器进行加载,因此Object类在程序的各种类加载器环境中都是同一个类。相反,如果用户自己写了一个名为java.lang.Object的类,并放在程序的Classpath中,那系统中将会出现多个不同的Object类,java类型体系中最基础的行为也无法保证,应用程序也会变得一片混乱。

解释器:是一种电脑程序,能够把高级编程语言一行一行直接翻译运行。解释器不会一次把整个程序翻译出来,只像一位“中间人”,每次运行程序时都要先转成另一种语言再作运行,因此解释器的程序运行速度比较缓慢。它每翻译一行程序叙述就立刻运行,然后再翻译下一行,再运行,如此不停地进行下去。它会先将源码翻译成另一种语言,以供多次运行而无需再经编译。其制成品无需依赖编译器而运行,程序运行速度比较快。

即时编译(Just-in-time compilation: JIT):又叫实时编译、及时编译。是指一种在运行时期把字节码编译成原生机器码的技术,一句一句翻译源代码,但是会将翻译过的代码缓存起来以降低性能耗损。这项技术是被用来改善虚拟机的性能的。

JIT编译器是JRE的一部分。原本的Java程序都是要经过解释执行的,其执行速度肯定比可执行的二进制字节码程序慢。为了提高执行速度,引入了JIT。在运行时,JIT会把翻译过来的机器码保存起来,以备下次使用。而如果JIT对每条字节码都进行编译,则会负担过重,所以,JIT只会对经常执行的字节码进行编译,如循环,高频度使用的方法等。它会以整个方法为单位,一次性将整个方法的字节码编译为本地机器码,然后直接运行编译后的机器码。