转载请注明来源:cuixiaolei的技术博客



这篇文章是lk启动流程分析(以高通为例),将会详细介绍下面的内容:

1).正常开机引导流程

2).recovery引导流程

3).fastboot引导流程

4).ffbm引导流程

5).lk向kernel传参


start----------------------------------------


在bootable/bootloader/lk/arch/arm/crt0.S文件中有下面代码,所以从kmain()开始介绍

bl        kmain

kmain函数位于bootable/bootloader/lk/kernel/main.c

lk启动流程详细分析(高通)_#if

/* called from crt0.S */ void kmain(void) __NO_RETURN __EXTERNALLY_VISIBLE; void kmain(void) {     // get us into some sort of thread context     thread_init_early();          //初始化线程上下文  #ifdef FEATURE_AFTER_SALE_LOG_LK     // do console early init     console_init_early();          //初始化控制台 #endif      // early arch stuff     arch_early_init();          //架构初始化,如关闭cache,使能mmu      // do any super early platform initialization     platform_early_init();         //平台早期初始化      // do any super early target initialization     target_early_init();               //目标设备早期初始化,初始化串口      dprintf(INFO, "welcome to lk\n\n");     bs_set_timestamp(BS_BL_START);                 // deal with any static constructors     dprintf(SPEW, "calling constructors\n");     call_constructors();      // bring up the kernel heap     dprintf(SPEW, "initializing heap\n");     heap_init();                      //堆初始化      __stack_chk_guard_setup();      // initialize the threading system     dprintf(SPEW, "initializing threads\n");     thread_init();                     //线程初始化  #ifdef FEATURE_AFTER_SALE_LOG_LK     // initialize the console layer      dprintf(SPEW, "initializing console layer\n");     console_init();           //初始化控制台 #endif      // initialize the dpc system     dprintf(SPEW, "initializing dpc\n");     dpc_init();                        //lk系统控制器初始化      // initialize kernel timers     dprintf(SPEW, "initializing timers\n");     timer_init();                //kernel时钟初始化  #if (!ENABLE_NANDWRITE)     // create a thread to complete system initialization     dprintf(SPEW, "creating bootstrap completion thread\n");     thread_resume(thread_create("bootstrap2", &bootstrap2, NULL, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE));     //创建一个线程初始化系统      // enable interrupts     exit_critical_section();       //使能中断      // become the idle thread     thread_become_idle();      //本线程切换成idle线程,idle为空闲线程,当没有更高优先级的线程时才执行 #else         bootstrap_nandwrite(); #endif }

lk启动流程详细分析(高通)_#if_02

arch_early_init()负责使能内存管理单元mmu

lk启动流程详细分析(高通)_#if_03

bootable/bootloader/lk/arch/arm/arch.c void arch_early_init(void) {     /* turn off the cache */     arch_disable_cache(UCACHE);      //关闭cache      /* set the vector base to our exception vectors so we dont need to double map at 0 */ #if ARM_CPU_CORTEX_A8     set_vector_base(MEMBASE);       //设置异常向量基地址 #endif  #if ARM_WITH_MMU     arm_mmu_init();       //使能mmu  #endif      /* turn the cache back on */     arch_enable_cache(UCACHE);      //打开cache  #if ARM_WITH_NEON     /* enable cp10 and cp11 */     uint32_t val;     __asm__ volatile("mrc    p15, 0, %0, c1, c0, 2" : "=r" (val));     val |= (3<<22)|(3<<20);     __asm__ volatile("mcr    p15, 0, %0, c1, c0, 2" :: "r" (val));      isb();      /* set enable bit in fpexc */     __asm__ volatile("mrc  p10, 7, %0, c8, c0, 0" : "=r" (val));     val |= (1<<30);     __asm__ volatile("mcr  p10, 7, %0, c8, c0, 0" :: "r" (val)); #endif  #if ARM_CPU_CORTEX_A8     /* enable the cycle count register */     uint32_t en;     __asm__ volatile("mrc    p15, 0, %0, c9, c12, 0" : "=r" (en));     en &= ~(1<<3); /* cycle count every cycle */     en |= 1; /* enable all performance counters */     __asm__ volatile("mcr    p15, 0, %0, c9, c12, 0" :: "r" (en));      /* enable cycle counter */     en = (1<<31);     __asm__ volatile("mcr    p15, 0, %0, c9, c12, 1" :: "r" (en)); #endif }

lk启动流程详细分析(高通)_#endif_04

platform_early_init()平台早期初始化,初始化平台的时钟和主板

lk启动流程详细分析(高通)_linux_05

bootable\bootloader\lk\platform\msm8952\platform.c void platform_early_init(void) {     board_init(); //主板初始化     platform_clock_init(); //时钟初始化     qgic_init();     qtimer_init();  }

lk启动流程详细分析(高通)_#endif_06


从代码可知,会创建一个bootstrap2线程,并使能中断

lk启动流程详细分析(高通)_linux_07

static int bootstrap2(void *arg) {     dprintf(SPEW, "top of bootstrap2()\n");      arch_init();     //架构初始化,此函数为空,什么都没做      // XXX put this somewhere else #if WITH_LIB_BIO     bio_init(); #endif #if WITH_LIB_FS     fs_init(); #endif      // initialize the rest of the platform     dprintf(SPEW, "initializing platform\n");     platform_init();           // 平台初始化,不同的平台要做的事情不一样,可以是初始化系统时钟,超频等      // initialize the target     dprintf(SPEW, "initializing target\n");     target_init();            //目标设备初始化,主要初始化Flash,整合分区表等      dprintf(SPEW, "calling apps_init()\n");     apps_init();           //应用功能初始化,主要调用boot_init,启动kernel,加载boot/recovery镜像等      return 0; }

lk启动流程详细分析(高通)_sed_08

apps_init()通过下面方式进入aboot_init()函数

APP_START(aboot)

.init = aboot_init,

APP_END

lk启动流程详细分析(高通)_linux_09

bootable/bootloader/lk/app/app.cvoid apps_init(void) {     const struct app_descriptor *app;      /* call all the init routines */     for (app = &__apps_start; app != &__apps_end; app++) {         if (app->init)             app->init(app);     }      /* start any that want to start on boot */     for (app = &__apps_start; app != &__apps_end; app++) {         if (app->entry && (app->flags & APP_FLAG_DONT_START_ON_BOOT) == 0) {             start_app(app);         }     } }

lk启动流程详细分析(高通)_初始化_10



从这里开始是这篇文章的重点,分析aboot.c文件。每个项目的文件可能会有不同,但是差别会很小。

lk启动流程详细分析(高通)_#endif_11

bootable/bootloader/lk/app/aboot/aboot.c  void aboot_init(const struct app_descriptor *app) {     unsigned reboot_mode = 0;     unsigned restart_reason = 0;     unsigned hard_reboot_mode = 0;     bool boot_into_fastboot = false;     uint8_t pon_reason = pm8950_get_pon_reason();                   //pm8950_get_pon_reason()  获取开机原因      /* Setup page size information for nv storage */     if (target_is_emmc_boot())             //检测是emmc还是flash存储,并设置页大小,一般是2048     {         page_size = mmc_page_size();         page_mask = page_size - 1;     }     else     {         page_size = flash_page_size();         page_mask = page_size - 1;     }      ASSERT((MEMBASE + MEMSIZE) > MEMBASE);           //断言,如果内存基地址+内存大小小于内存基地址,则直接终止错误      read_device_info(&device);                 //从devinfo分区表read data到device结构体                 read_allow_oem_unlock(&device);            //devinfo分区里记录了unlock状态,从device中读取此信息      /* Display splash screen if enabled */     if (!check_alarm_boot()) {                    dprintf(SPEW, "Display Init: Start\n");         target_display_init(device.display_panel);          //显示splash,Splash也就是应用程序启动之前先启动一个画面,上面简单的介绍应用程序的厂商,厂商的LOGO,名称和版本等信息,多为一张图片              dprintf(SPEW, "Display Init: Done\n");     }    #ifdef FEATURE_LOW_POWER_DISP_LK     if(is_low_voltage) {           //如果电量低,则显示关机动画,并关闭设备         mdelay(2000);         //target_uninit();         target_display_shutdown();         shutdown_device();     } #endif      is_alarm_boot = check_alarm_boot();                           //检测开机原因是否是由于关机闹钟导致      target_serialno((unsigned char *) sn_buf);     dprintf(SPEW,"serial number: %s\n",sn_buf);      memset(display_panel_buf, '\0', MAX_PANEL_BUF_SIZE);            /*      * Check power off reason if user force reset,      * if yes phone will do normal boot.      */     if (is_user_force_reset())                                        //如果强制重启,直接进入normal_boot         goto normal_boot;     dprintf(ALWAYS, "pon_reason=0x%02x\n", pon_reason);      /* Check if we should do something other than booting up */     if ( (pon_reason & USB_CHG)                 //启动原因是插上USB,并且用户同时按住了音量上下键,进入下载模式         && (keys_get_state(KEY_VOLUMEUP) && keys_get_state(KEY_VOLUMEDOWN)))      {               display_dloadimage_on_screen();          //显示下载模式图片             volume_keys_init();             //初始化音量按键             int i = 0;             int j = 0;             int k = 0;             dload_flag = 1 ;             while(1)            //进入下载模式后,通过不同的按键组合进入不同的模式,下面的代码逻辑很简单,就不介绍了             {                 thread_sleep(200);                 //dprintf(ALWAYS, "in while circle\n");                 if ( check_volume_up_key() && !check_volume_down_key() && !check_power_key() )                 {                     /* Hold volume_up_key 3 sec to download mode, if not enough, need to hold another 3 sec. */                     for(i = 0;i < 15;++i)                     {                         thread_sleep(200);                         if (!check_volume_up_key())                         {                             dprintf(ALWAYS, "press volume_up not enough time\n");                             break;                         }                     }                     if(i == 15)                     {                         break;                     }                 }                 else if (check_power_key() && !check_volume_up_key() && !check_volume_down_key())                     {                        /* Hold power_key 1 sec to normal boot, if not enough, need to hold another 1 sec. */                        for(j = 0;j < 5;++j)                         {                             thread_sleep(200);                             if (!check_power_key())                             {                                 //dprintf(ALWAYS, "press power_key not enough time\n");                                 break;                             }                         }                         if(j == 5)                         {                             goto normal_boot;                         }                     }                     else if (!check_volume_down_key() && !check_volume_up_key() && !check_power_key())                         {                             /* Hold no key and go to normal boot 30 sec later. */                             for(k = 0;k < 150;++k)                             {                                 thread_sleep(200);                                 if (check_power_key() || check_volume_up_key())                                 {                                     //dprintf(ALWAYS, "press nothing\n");                                     break;                                 }                             }                             if(k == 150)                             {                                 //dprintf(ALWAYS, "goto normal_boot\n");                                 goto normal_boot;                             }                         }             }            dprintf(CRITICAL,"dload mode key sequence detected\n");         if (set_download_mode(EMERGENCY_DLOAD))         {             dprintf(CRITICAL,"dload mode not supported by target\n");         }         else         {             reboot_device(DLOAD);             dprintf(ALWAYS,"Failed to reboot into dload mode\n");         }         boot_into_fastboot = true;         //下载模式本质上是进入fastboot     }      if (!boot_into_fastboot)    //如果不是通过usb+上下键进入下载模式     {         if (keys_get_state(KEY_HOME) || (keys_get_state(KEY_VOLUMEUP) && !keys_get_state(KEY_VOLUMEDOWN))) //上键+电源键 进入recovery模式         {             boot_into_recovery = 1;             struct recovery_message msg;             strcpy(msg.recovery, "recovery\n--show_text");                    }          if (!boot_into_recovery &&             (keys_get_state(KEY_BACK) || (keys_get_state(KEY_VOLUMEDOWN) && !keys_get_state(KEY_VOLUMEUP))))   //下键+back键进入fastboot模式,我的手机是有back实体键的             boot_into_fastboot = true;     }       reboot_mode = check_reboot_mode();                          //检测开机原因,并且修改相应的标志位     hard_reboot_mode = check_hard_reboot_mode();     if (reboot_mode == RECOVERY_MODE ||         hard_reboot_mode == RECOVERY_HARD_RESET_MODE) {         boot_into_recovery = 1;     } else if(reboot_mode == FASTBOOT_MODE ||         hard_reboot_mode == FASTBOOT_HARD_RESET_MODE) {         boot_into_fastboot = true;     } else if(reboot_mode == ALARM_BOOT ||         hard_reboot_mode == RTC_HARD_RESET_MODE) {         boot_reason_alarm = true;      }     else if (reboot_mode == DM_VERITY_ENFORCING)     {         device.verity_mode = 1;         write_device_info(&device);     } else if(reboot_mode == DM_VERITY_LOGGING) {         device.verity_mode = 0;         write_device_info(&device);     } else if(reboot_mode == DM_VERITY_KEYSCLEAR) {         if(send_delete_keys_to_tz())             ASSERT(0);     }  normal_boot:     if(dload_flag){         display_image_on_screen();                 //显示界面,上面提到过     }     if (!boot_into_fastboot)  //如果不是fastboot模式     {         if (target_is_emmc_boot())         {             if(emmc_recovery_init())                 dprintf(ALWAYS,"error in emmc_recovery_init\n");             if(target_use_signed_kernel())             {                 if((device.is_unlocked) || (device.is_tampered))                 {                 #ifdef TZ_TAMPER_FUSE                     set_tamper_fuse_cmd();                 #endif                 #if USE_PCOM_SECBOOT                     set_tamper_flag(device.is_tampered);                 #endif                 }             }              boot_linux_from_mmc();     //程序会跑到这里,又一个重点内容,下面会独立分析这个函数。         }         else         {             recovery_init();     #if USE_PCOM_SECBOOT         if((device.is_unlocked) || (device.is_tampered))             set_tamper_flag(device.is_tampered);     #endif             boot_linux_from_flash();         }         dprintf(CRITICAL, "ERROR: Could not do normal boot. Reverting "             "to fastboot mode.\n");     }       //下面的代码是fastboot的准备工作,从中可以看出,进入fastboot模式是不启动kernel的       /* We are here means regular boot did not happen. Start fastboot. */      /* register aboot specific fastboot commands */     aboot_fastboot_register_commands();     //注册fastboot命令,建议看下此函数的源码,此函数是fastboot支持的命令,如flash、erase等等      /* dump partition table for debug info */     partition_dump();      /* initialize and start fastboot */     fastboot_init(target_get_scratch_address(), target_get_max_flash_size());     //初始化fastboot #if FBCON_DISPLAY_MSG     display_fastboot_menu_thread();         //显示fastboot界面 #endif }

lk启动流程详细分析(高通)_linux_12

关于device_info,这里多说一点

lk启动流程详细分析(高通)_#endif_13

devinfo     Device information including:iis_unlocked, is_tampered, is_verified, charger_screen_enabled, display_panel, bootloader_version, radio_version                All these attirbutes are set based on some specific conditions and written on devinfo partition.  devinfo是一个独立的分区,里面存放了下面的一些信息,上面是高通对这个分区的介绍。  struct device_info {     unsigned char magic[DEVICE_MAGIC_SIZE];     bool is_unlocked;     bool is_tampered;     bool is_verified;     bool charger_screen_enabled;     char display_panel[MAX_PANEL_ID_LEN];     char bootloader_version[MAX_VERSION_LEN];     char radio_version[MAX_VERSION_LEN]; };

lk启动流程详细分析(高通)_linux_14

从上面的分析,我们大致可以知道boot_init()主要工作

1).确定page_size大小;

2).从devinfo分区获取devinfo信息;

3).通过不同按键选择设置对应标志位boot_into_xxx;

4).如果进入fastboot模式,初始化fastboot命令等。

5).进入boot_linux_from_mmc()函数。



下面分析lk启动过程中另一个重要的函数boot_linux_from_mmc();它主要负责根据boot_into_xxx从对应的分区内读取相关信息并传给kernel,然后引导kernel。

程序走到这,说成没有进入fastboot模式,可能的情况有:正常启动,进入recovery,开机闹钟启动。

boot_linux_from_mmc()主要做下面的事情

1).程序会从boot分区或者recovery分区的header中读取地址等信息,然后把kernel、ramdisk加载到内存中。

2).程序会从misc分区中读取bootloader_message结构体,如果有boot-recovery,则进入recovery模式

3).更新cmdline,然后把cmdline写到tags_addr地址,把参数传给kernel,kernel起来以后会到这个地址读取参数。

lk启动流程详细分析(高通)_linux_15

int boot_linux_from_mmc(void)                                   {     struct boot_img_hdr *hdr = (void*) buf;       //************buf和hdr指向相同的地址,可以理解为buf就是hdr     struct boot_img_hdr *uhdr;     unsigned offset = 0;     int rcode;     unsigned long long ptn = 0;     int index = INVALID_PTN;      unsigned char *image_addr = 0;     unsigned kernel_actual;     unsigned ramdisk_actual;     unsigned imagesize_actual;     unsigned second_actual = 0;      unsigned int dtb_size = 0;     unsigned int out_len = 0;     unsigned int out_avai_len = 0;     unsigned char *out_addr = NULL;     uint32_t dtb_offset = 0;     unsigned char *kernel_start_addr = NULL;     unsigned int kernel_size = 0;     int rc;  #if DEVICE_TREE                         struct dt_table *table;     struct dt_entry dt_entry;     unsigned dt_table_offset;     uint32_t dt_actual;     uint32_t dt_hdr_size;     unsigned char *best_match_dt_addr = NULL; #endif     struct kernel64_hdr *kptr = NULL;      if (check_format_bit())                        //查找bootselect分区,查看分区表,没有此分区,所以返回值为false         boot_into_recovery = 1;      if (!boot_into_recovery) {                     //此时有两种可能,正常开机/进入ffbm工厂测试模式,进入工厂测试模式是正行启动,但是向kernel传参会多一个字符串"androidboot.mode='ffbm_mode_string'"          memset(ffbm_mode_string, '\0', sizeof(ffbm_mode_string));     //ffbm_mode_string = ""         rcode = get_ffbm(ffbm_mode_string, sizeof(ffbm_mode_string));  //从misc分区0地址中读取sizeof(ffbm_mode_string)的内容,如果内容是"ffbm-",返回1,否则返回0         if (rcode <= 0) {             boot_into_ffbm = false;             if (rcode < 0)                 dprintf(CRITICAL,"failed to get ffbm cookie");         } else             boot_into_ffbm = true;     } else                                     //boot_into_recovery=true         boot_into_ffbm = false;     uhdr = (struct boot_img_hdr *)EMMC_BOOT_IMG_HEADER_ADDR;           //uhdr指向boot分区header地址,header是什么东西,下面会详细介绍     if (!memcmp(uhdr->magic, BOOT_MAGIC, BOOT_MAGIC_SIZE)) {      //检查uhdr->magic 是否等于 "ANDROID!",不知到为什么要这么做,觉的没有什么作用         dprintf(INFO, "Unified boot method!\n");         hdr = uhdr;         goto unified_boot;     }     if (!boot_into_recovery) {    //如果不是recovery模式,可能是正常启动或者进入ffbm,再次生命ffbm和正常启动流程一样启动kernel,只是kernel起来以后,init.c文件会读取是否有"ffbm-"         index = partition_get_index("boot");         //读取boot分区         ptn = partition_get_offset(index);      //读取boot分区的偏移量         if(ptn == 0) {             dprintf(CRITICAL, "ERROR: No boot partition found\n");                     return -1;         }     }     else {         index = partition_get_index("recovery");        //进入recovery模式,读取recovery分区,并获得recovery分区的偏移量。recovery.img和boot.img的组成是一样的,下面有介绍         ptn = partition_get_offset(index);         if(ptn == 0) {             dprintf(CRITICAL, "ERROR: No recovery partition found\n");                     return -1;         }     }     /* Set Lun for boot & recovery partitions */     mmc_set_lun(partition_get_lun(index));              if (mmc_read(ptn + offset, (uint32_t *) buf, page_size)) {                 //从boot/recovery分区读取1字节的内容到buf(hdr)中,我们知道在boot/recovery中开始的1字节存放的是hdr的内容,下面有详细的介绍。         dprintf(CRITICAL, "ERROR: Cannot read boot image header\n");                 return -1;     }      if (memcmp(hdr->magic, BOOT_MAGIC, BOOT_MAGIC_SIZE)) {                   //上面已经从boot/recovery分区读取了header到hdr,这里对比magic是否等于"ANDROID!",如果不是,则表明读取的header是错误的,也算是校验吧         dprintf(CRITICAL, "ERROR: Invalid boot image header\n");                 return -1;     }      if (hdr->page_size && (hdr->page_size != page_size)) {                   //比较也的大小是否相同,应该都是相同的2048字节          if (hdr->page_size > BOOT_IMG_MAX_PAGE_SIZE) {             dprintf(CRITICAL, "ERROR: Invalid page size\n");             return -1;         }         page_size = hdr->page_size;         page_mask = page_size - 1;     }      /* ensure commandline is terminated */     hdr->cmdline[BOOT_ARGS_SIZE-1] = 0;               kernel_actual  = ROUND_TO_PAGE(hdr->kernel_size,  page_mask);          //kernel所占的页的总大小       例如kernel大小0x01,kernel_actual = 2048     ramdisk_actual = ROUND_TO_PAGE(hdr->ramdisk_size, page_mask);          //ramdisk所占的页的总大小      image_addr = (unsigned char *)target_get_scratch_address();              #if DEVICE_TREE     dt_actual = ROUND_TO_PAGE(hdr->dt_size, page_mask);     //dt所占的页的大小     imagesize_actual = (page_size + kernel_actual + ramdisk_actual + dt_actual);          //image占的页的总大小 #else     imagesize_actual = (page_size + kernel_actual + ramdisk_actual); #endif  #if VERIFIED_BOOT     boot_verifier_init();   //校验boot #endif      if (check_aboot_addr_range_overlap((uint32_t) image_addr, imagesize_actual))       //校验image_addr是否被覆盖     {         dprintf(CRITICAL, "Boot image buffer address overlaps with aboot addresses.\n");         return -1;     }      /*      * Update loading flow of bootimage to support compressed/uncompressed      * bootimage on both 64bit and 32bit platform.      * 1. Load bootimage from emmc partition onto DDR.      * 2. Check if bootimage is gzip format. If yes, decompress compressed kernel      * 3. Check kernel header and update kernel load addr for 64bit and 32bit      *    platform accordingly.      * 4. Sanity Check on kernel_addr and ramdisk_addr and copy data.      */      dprintf(INFO, "Loading boot image (%d): start\n", imagesize_actual);     bs_set_timestamp(BS_KERNEL_LOAD_START);      /* Read image without signature */     if (mmc_read(ptn + offset, (void *)image_addr, imagesize_actual))        //读取boot/recovery分区到image_addr     {         dprintf(CRITICAL, "ERROR: Cannot read boot image\n");         return -1;     }      dprintf(INFO, "Loading boot image (%d): done\n", imagesize_actual);     bs_set_timestamp(BS_KERNEL_LOAD_DONE);      /* Authenticate Kernel */     dprintf(INFO, "use_signed_kernel=%d, is_unlocked=%d, is_tampered=%d.\n",         (int) target_use_signed_kernel(),         device.is_unlocked,         device.is_tampered);      if(target_use_signed_kernel() && (!device.is_unlocked))               //这里是false ,感兴趣可以追target_use_signed_kernel(),会发现这个函数返回的是0     {         offset = imagesize_actual;uhdr->magic         if (check_aboot_addr_range_overlap((uint32_t)image_addr + offset, page_size))         {             dprintf(CRITICAL, "Signature read buffer address overlaps with aboot addresses.\n");             return -1;         }          /* Read signature */         if(mmc_read(ptn + offset, (voidffbm_mode_string *)(image_addr + offset), page_size))         {             dprintf(CRITICAL, "ERROR: Cannot read boot image signature\n");             return -1;         }          verify_signed_bootimg((uint32_t)image_addr, imagesize_actual);     } else {         second_actual  = ROUND_TO_PAGE(hdr->second_size,  page_mask);              #ifdef TZ_SAVE_KERNEL_HASH         aboot_save_boot_hash_mmc((uint32_t) image_addr, imagesize_actual);         #endif /* TZ_SAVE_KERNEL_HASH */  #if VERIFIED_BOOT     if(boot_verify_get_state() == ORANGE)    //校验boot     { #if FBCON_DISPLAY_MSG         display_bootverify_menu_thread(DISPLAY_MENU_ORANGE);         wait_for_users_action(); #else         dprintf(CRITICAL,             "Your device has been unlocked and can't be trusted.\nWait for 5 seconds before proceeding\n");         mdelay(5000); #endif         set_root_flag(ORANGE,1);     } #endif  #ifdef MDTP_SUPPORT         {             /* Verify MDTP lock.              * For boot & recovery partitions, MDTP will use boot_verifier APIs,              * since verification was skipped in aboot. The signature is not part of the loaded image.              */             mdtp_ext_partition_verification_t ext_partition;             ext_partition.partition = boot_into_recovery ? MDTP_PARTITION_RECOVERY : MDTP_PARTITION_BOOT;             ext_partition.integrity_state = MDTP_PARTITION_STATE_UNSET;             ext_partition.page_size = page_size;             ext_partition.image_addr = (uint32)image_addr;             ext_partition.image_size = imagesize_actual;             ext_partition.sig_avail = FALSE;             mdtp_fwlock_verify_lock(&ext_partition);         } #endif /* MDTP_SUPPORT */     }  #if VERIFIED_BOOT #if !VBOOT_MOTA     // send root of trust     if(!send_rot_command((uint32_t)device.is_unlocked))         ASSERT(0); #endif #endif     /*      * Check if the kernel image is a gzip package. If yes, need to decompress it.      * If not, continue booting.      */        //检测kernel image是否是gzip的包,如果是,解压,如果不是,继续boot。得到kernel的起始地址和大小      if (is_gzip_package((unsigned char *)(image_addr + page_size), hdr->kernel_size))     {         out_addr = (unsigned char *)(image_addr + imagesize_actual + page_size);         out_avai_len = target_get_max_flash_size() - imagesize_actual - page_size;         dprintf(INFO, "decompressing kernel image: start\n");         rc = decompress((unsigned char *)(image_addr + page_size),                 hdr->kernel_size, out_addr, out_avai_len,                 &dtb_offset, &out_len);         if (rc)         {             dprintf(CRITICAL, "decompressing kernel image failed!!!\n");             ASSERT(0);         }          dprintf(INFO, "decompressing kernel image: done\n");         kptr = (struct kernel64_hdr *)out_addr;         kernel_start_addr = out_addr;         kernel_size = out_len;     } else {         kptr = (struct kernel64_hdr *)(image_addr + page_size);         kernel_start_addr = (unsigned char *)(image_addr + page_size);   //kernel_start起始地址         kernel_size = hdr->kernel_size; //kernel大小     }      /*      * Update the kernel/ramdisk/tags address if the boot image header      * has default values, these default values come from mkbootimg when      * the boot image is flashed using fastboot flash:raw      */     update_ker_tags_rdisk_addr(hdr, IS_ARM64(kptr)); //更新kernel/tags/ramdisk地址         /* Get virtual addresses since the hdr saves physical addresses. */     hdr->kernel_addr = VA((addr_t)(hdr->kernel_addr));        //保存虚拟地址(mmu)     hdr->ramdisk_addr = VA((addr_t)(hdr->ramdisk_addr));     hdr->tags_addr = VA((addr_t)(hdr->tags_addr));      kernel_size = ROUND_TO_PAGE(kernel_size,  page_mask);     /* Check if the addresses in the header are valid. */     if (check_aboot_addr_range_overlap(hdr->kernel_addr, kernel_size) ||                      //检测kernel/ramdisk/tags地址是否超出emmc地址         check_aboot_addr_range_overlap(hdr->ramdisk_addr, ramdisk_actual))     {         dprintf(CRITICAL, "kernel/ramdisk addresses overlap with aboot addresses.\n");         return -1;     }  #ifndef DEVICE_TREE     if (check_aboot_addr_range_overlap(hdr->tags_addr, MAX_TAGS_SIZE))     {         dprintf(CRITICAL, "Tags addresses overlap with aboot addresses.\n");         return -1;     } #endif      /* Move kernel, ramdisk and device tree to correct address */     memmove((void*) hdr->kernel_addr, kernel_start_addr, kernel_size);       //把kernel/ramdisk放在相应的地址上     memmove((void*) hdr->ramdisk_addr, (char *)(image_addr + page_size + kernel_actual), hdr->ramdisk_size);      #if DEVICE_TREE   //读取设备树信息,放在相应的地址上     if(hdr->dt_size) {         dt_table_offset = ((uint32_t)image_addr + page_size + kernel_actual + ramdisk_actual + second_actual);         table = (struct dt_table*) dt_table_offset;          if (dev_tree_validate(table, hdr->page_size, &dt_hdr_size) != 0) {             dprintf(CRITICAL, "ERROR: Cannot validate Device Tree Table \n");             return -1;         }          /* Find index of device tree within device tree table */         if(dev_tree_get_entry_info(table, &dt_entry) != 0){             dprintf(CRITICAL, "ERROR: Getting device tree address failed\n");             return -1;         }          if (is_gzip_package((unsigned char *)dt_table_offset + dt_entry.offset, dt_entry.size))         {             unsigned int compressed_size = 0;             out_addr += out_len;             out_avai_len -= out_len;             dprintf(INFO, "decompressing dtb: start\n");             rc = decompress((unsigned char *)dt_table_offset + dt_entry.offset,                     dt_entry.size, out_addr, out_avai_len,                     &compressed_size, &dtb_size);             if (rc)             {                 dprintf(CRITICAL, "decompressing dtb failed!!!\n");                 ASSERT(0);             }              dprintf(INFO, "decompressing dtb: done\n");             best_match_dt_addr = out_addr;         } else {             best_match_dt_addr = (unsigned char *)dt_table_offset + dt_entry.offset;             dtb_size = dt_entry.size;         }          /* Validate and Read device device tree in the tags_addr */         if (check_aboot_addr_range_overlap(hdr->tags_addr, dtb_size))         {             dprintf(CRITICAL, "Device tree addresses overlap with aboot addresses.\n");             return -1;         }          memmove((void *)hdr->tags_addr, (char *)best_match_dt_addr, dtb_size);     } else {         /* Validate the tags_addr */         if (check_aboot_addr_range_overlap(hdr->tags_addr, kernel_actual))         {             dprintf(CRITICAL, "Device tree addresses overlap with aboot addresses.\n");             return -1;         }         /*          * If appended dev tree is found, update the atags with          * memory address to the DTB appended location on RAM.          * Else update with the atags address in the kernel header          */         void *dtb;         dtb = dev_tree_appended((void*)(image_addr + page_size),                     hdr->kernel_size, dtb_offset,                     (void *)hdr->tags_addr);         if (!dtb) {             dprintf(CRITICAL, "ERROR: Appended Device Tree Blob not found\n");             return -1;         }     }     #endif      if (boot_into_recovery && !device.is_unlocked && !device.is_tampered)         target_load_ssd_keystore();  unified_boot:      boot_linux((void *)hdr->kernel_addr, (void *)hdr->tags_addr,           //进入boot_linux函数,此函数比较简单,更新cmdline。            (const char *)hdr->cmdline, board_machtype(),            (void *)hdr->ramdisk_addr, hdr->ramdisk_size);      return 0; }

lk启动流程详细分析(高通)_#endif_16

如果misc分区的0地址内容是"ffbm-",则boot_into_ffbm=true

lk启动流程详细分析(高通)_sed_17

int get_ffbm(char *ffbm, unsigned size) {     const char *ffbm_cmd = "ffbm-";     uint32_t page_size = get_page_size();     char *ffbm_page_buffer = NULL;     int retval = 0;     if (size < FFBM_MODE_BUF_SIZE || size >= page_size)     {         dprintf(CRITICAL, "Invalid size argument passed to get_ffbm\n");         retval = -1;         goto cleanup;     }     ffbm_page_buffer = (char*)malloc(page_size);     if (!ffbm_page_buffer)     {         dprintf(CRITICAL, "Failed to alloc buffer for ffbm cookie\n");         retval = -1;         goto cleanup;     }     if (read_misc(0, ffbm_page_buffer, page_size))     {         dprintf(CRITICAL, "Error reading MISC partition\n");         retval = -1;         goto cleanup;     }     ffbm_page_buffer[size] = '\0';     if (strncmp(ffbm_cmd, ffbm_page_buffer, strlen(ffbm_cmd)))     {         retval = 0;         goto cleanup;     }     else     {         if (strlcpy(ffbm, ffbm_page_buffer, size) <                 FFBM_MODE_BUF_SIZE -1)         {             dprintf(CRITICAL, "Invalid string in misc partition\n");             retval = -1;         }         else             retval = 1;     } cleanup:     if(ffbm_page_buffer)         free(ffbm_page_buffer);     return retval; }

lk启动流程详细分析(高通)_#if_18


boot.img和recovery.img的组成是一样的,所以lk加载方式一样,只是读取的地址和大小不同而已。

我们看下boot.img和recovery.img镜像里有什么,理解了这个再看lk加载boot.img/recovery.img就知道是怎么回事了:

** +-----------------+  ** | boot header     | 1 page ** +-----------------+ ** | kernel          | n pages   ** +-----------------+ ** | ramdisk         | m pages   ** +-----------------+ ** | second stage    | o pages ** +-----------------+ ** | device tree     | p pages ** +-----------------+    分析boot_img_hdr结构提   kernel_size  kernel表示zImage的实际大小   kernel_addr  kernel的zImage载入内存的物理地址,也是bootloader要跳转的地址   ramdisk_size  ramdisk的实际大小   ramdisk_addr  ramdisk加载到内存的实际物理地址,之后kernel会解压并把它挂载成根文件系统,我们的中枢神经-init.rc就隐藏于内   tags_addr    tags_addr是传参数用的物理内存地址,它作用是把bootloader中的参数传递给kernel,参数放在这个地址上
  page_size page_size是存储芯片(ram/emmc)的页大小,取决与存储芯片 cmdline command line它可以由bootloader向kernel传参的内容,存放在tag_addr地址 second 可选

lk启动流程详细分析(高通)_#endif_19

bootable/bootloader/lk/app/aboot/bootimg.h  #ifndef _BOOT_IMAGE_H_ #define _BOOT_IMAGE_H_  typedef struct boot_img_hdr boot_img_hdr;  #define BOOT_MAGIC "ANDROID!" #define BOOT_MAGIC_SIZE 8 #define BOOT_NAME_SIZE  16 #define BOOT_ARGS_SIZE  512 #define BOOT_IMG_MAX_PAGE_SIZE 4096  struct boot_img_hdr {     unsigned char magic[BOOT_MAGIC_SIZE];      unsigned kernel_size;  /* size in bytes */     unsigned kernel_addr;  /* physical load addr */      unsigned ramdisk_size; /* size in bytes */     unsigned ramdisk_addr; /* physical load addr */      unsigned second_size;  /* size in bytes */     unsigned second_addr;  /* physical load addr */      unsigned tags_addr;    /* physical addr for kernel tags */     unsigned page_size;    /* flash page size we assume */     unsigned dt_size;      /* device_tree in bytes */     unsigned unused;    /* future expansion: should be 0 */      unsigned char name[BOOT_NAME_SIZE]; /* asciiz product name */          unsigned char cmdline[BOOT_ARGS_SIZE];      unsigned id[8]; /* timestamp / checksum / sha1 / etc */ };  /* ** +-----------------+  ** | boot header     | 1 page ** +-----------------+ ** | kernel          | n pages   ** +-----------------+ ** | ramdisk         | m pages   ** +-----------------+ ** | second stage    | o pages ** +-----------------+ ** | device tree     | p pages ** +-----------------+ ** ** n = (kernel_size + page_size - 1) / page_size ** m = (ramdisk_size + page_size - 1) / page_size ** o = (second_size + page_size - 1) / page_size ** p = (dt_size + page_size - 1) / page_size ** 0. all entities are page_size aligned in flash ** 1. kernel and ramdisk are required (size != 0) ** 2. second is optional (second_size == 0 -> no second) ** 3. load each element (kernel, ramdisk, second) at **    the specified physical address (kernel_addr, etc) ** 4. prepare tags at tag_addr.  kernel_args[] is **    appended to the kernel commandline in the tags. ** 5. r0 = 0, r1 = MACHINE_TYPE, r2 = tags_addr ** 6. if second_size != 0: jump to second_addr **    else: jump to kernel_addr */  boot_img_hdr *mkbootimg(void *kernel, unsigned kernel_size,                         void *ramdisk, unsigned ramdisk_size,                         void *second, unsigned second_size,                         unsigned page_size,                         unsigned *bootimg_size);  void bootimg_set_cmdline(boot_img_hdr *hdr, const char *cmdline);                  #define KERNEL64_HDR_MAGIC 0x644D5241 /* ARM64 */  struct kernel64_hdr {     uint32_t insn;     uint32_t res1;     uint64_t text_offset;     uint64_t res2;     uint64_t res3;     uint64_t res4;     uint64_t res5;     uint64_t res6;     uint32_t magic_64;     uint32_t res7; };  #endif