本文是对nn.Module中的常用函数源码进行剖析(Module在pytorch中是大部分类的基类)
包含很多成员变量,一般是字典格式,默认情况下shuffle、dropout都是遵循training=true设置的
def __init__(self) -> None:
"""
Initializes internal Module state, shared by both nn.Module and ScriptModule.
"""
torch._C._log_api_usage_once("python.nn_module")
self.training = True
self._parameters: Dict[str, Optional[Parameter]] = OrderedDict()
self._buffers: Dict[str, Optional[Tensor]] = OrderedDict()
self._non_persistent_buffers_set: Set[str] = set()
self._backward_hooks: Dict[int, Callable] = OrderedDict()
self._is_full_backward_hook = None
self._forward_hooks: Dict[int, Callable] = OrderedDict()
self._forward_pre_hooks: Dict[int, Callable] = OrderedDict()
self._state_dict_hooks: Dict[int, Callable] = OrderedDict()
self._load_state_dict_pre_hooks: Dict[int, Callable] = OrderedDict()
self._load_state_dict_post_hooks: Dict[int, Callable] = OrderedDict()
self._modules: Dict[str, Optional['Module']] = OrderedDict()
作用:往当前模型中添加buffer。一般我们不能将buffer视为模型的参数,默认情况下buffers是持久的,可以和parameters一起保存,当然也可以设置False,就不会被保存了。参数说明:
name:buffer名称
tensor:注册的buffer张量的值
persistent:是否作为张量保存下来
def register_buffer(self, name: str, tensor: Optional[Tensor], persistent: bool = True) -> None:
pass # 具体的逻辑判断
3.register_parameter
作用:往模型中添加参数,使用频率较高。参数说明:
name:字符串形式,添加参数的名称
parameter:是tensor形式的继承,但必须写成Parameter(一个类)的实例形式,而不是简单的一个tensor
def register_parameter(self, name: str, param: Optional[Parameter]) -> None:
pass # 具体的逻辑判断
使用举例:https://www.codenong.com/cs106951116/
class Example(nn.Module):
def __init__(self):
super(Example, self).__init__()
print('看看我们的模型有哪些parameter:\t', self._parameters, end='\n')
self.W1_params = nn.Parameter(torch.rand(2,3))
print('增加W1后看看:',self._parameters, end='\n')
self.register_parameter('W2_params' , nn.Parameter(torch.rand(2,3))) # register parameter
print('增加W2后看看:',self._parameters, end='\n')
def forward(self, x):
return x
4.add_module
作用:往当前module中添加子模块
主要参考:
- B站up主Deep_thoughts讲解:深入剖析Pytorch的nn.Module
- nn.Module源码
深入剖析Pytorch的nn.Module源码
2022.07.22
本文是对nn.Module中的常用函数源码进行剖析(Module在pytorch中是大部分类的基类)
1.__init__函数
包含很多成员变量,一般是字典格式,默认情况下shuffle、dropout都是遵循training=true设置的
def __init__(self) -> None:
"""
Initializes internal Module state, shared by both nn.Module and ScriptModule.
"""
torch._C._log_api_usage_once("python.nn_module")
self.training = True # 设置 training = True 训练模式
self._parameters: Dict[str, Optional[Parameter]] = OrderedDict()
self._buffers: Dict[str, Optional[Tensor]] = OrderedDict()
self._non_persistent_buffers_set: Set[str] = set()
self._backward_hooks: Dict[int, Callable] = OrderedDict()
self._is_full_backward_hook = None
self._forward_hooks: Dict[int, Callable] = OrderedDict()
self._forward_pre_hooks: Dict[int, Callable] = OrderedDict()
self._state_dict_hooks: Dict[int, Callable] = OrderedDict()
self._load_state_dict_pre_hooks: Dict[int, Callable] = OrderedDict()
self._load_state_dict_post_hooks: Dict[int, Callable] = OrderedDict()
self._modules: Dict[str, Optional['Module']] = OrderedDict()
2.register_buffer
作用:往当前模型中添加buffer。一般我们不能将buffer视为模型的参数,默认情况下buffers是持久的,可以和parameters一起保存,当然也可以设置False,就不会被保存了。参数说明:
- name:buffer名称
- tensor:注册的buffer张量的值
- persistent:是否作为张量保存下来
def register_buffer(self, name: str, tensor: Optional[Tensor], persistent: bool = True) -> None:
pass # 具体的逻辑判断
3.register_parameter
作用:往模型中添加参数,使用频率较高。参数说明:
name:字符串形式,添加参数的名称
parameter:是tensor形式的继承,但必须写成Parameter(一个类)的实例形式,而不是简单的一个tensor
def register_parameter(self, name: str, param: Optional[Parameter]) -> None:
pass # 具体的逻辑判断
使用举例:https://www.codenong.com/cs106951116/
class Example(nn.Module):
def __init__(self):
super(Example, self).__init__()
print('看看我们的模型有哪些parameter:\t', self._parameters, end='\n')
self.W1_params = nn.Parameter(torch.rand(2,3))
print('增加W1后看看:',self._parameters, end='\n')
self.register_parameter('W2_params' , nn.Parameter(torch.rand(2,3))) # register parameter
print('增加W2后看看:',self._parameters, end='\n')
def forward(self, x):
return x
4.add_module
作用:往当前module中添加子模块。参数说明:
name:添加子模块的名称
module:Module类的实例
def add_module(self, name: str, module: Optional['Module']) -> None:
pass
5.get_parameter
作用:根据传入的target字符串获取参数,返回的是torch.nn.parameter的实例
def get_parameter(self, target: str) -> "Parameter":
module_path, _, param_name = target.rpartition(".") # 调用rpartition,解析出module位置与参数名称
mod: torch.nn.Module = self.get_submodule(module_path)
if not hasattr(mod, param_name): # 判断mod是否有name属性
raise AttributeError(mod._get_name() + " has no attribute `"
+ param_name + "`")
param: torch.nn.Parameter = getattr(mod, param_name)
if not isinstance(param, torch.nn.Parameter):
raise AttributeError("`" + param_name + "` is not an "
"nn.Parameter") # 判断是否是torch.nn.parameter的实例
return param
6._save_to_state_dict
作用:把模型所有的buffer、parameters放到一个dict中
def _save_to_state_dict(self, destination, prefix, keep_vars):
for name, param in self._parameters.items(): # 遍历参数和buffer,_parameters只是当前模块的,不对子模块遍历
if param is not None:
destination[prefix + name] = param if keep_vars else param.detach()
for name, buf in self._buffers.items():
if buf is not None and name not in self._non_persistent_buffers_set:
destination[prefix + name] = buf if keep_vars else buf.detach()
extra_state_key = prefix + _EXTRA_STATE_KEY_SUFFIX
if getattr(self.__class__, "get_extra_state", Module.get_extra_state) is not Module.get_extra_state:
destination[extra_state_key] = self.get_extra_state()
7.state_dict
作用:对当前module和子module进行递归计算,把他们的buffer和参数都存储到destination这个字典中,最终返回这样的一个字典
def state_dict(self, *args, destination=None, prefix='', keep_vars=False):
if len(args) > 0:
if destination is None:
destination = args[0]
if len(args) > 1 and prefix == '':
prefix = args[1]
if len(args) > 2 and keep_vars is False:
keep_vars = args[2]
# DeprecationWarning is ignored by default
warnings.warn(
"Positional args are being deprecated, use kwargs instead. Refer to "
"https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.state_dict"
" for details.")
if destination is None:
destination = OrderedDict()
destination._metadata = OrderedDict()
local_metadata = dict(version=self._version)
if hasattr(destination, "_metadata"):
destination._metadata[prefix[:-1]] = local_metadata
self._save_to_state_dict(destination, prefix, keep_vars) # 第一步,把当前模块的参数和buffer存储到字典destination中
for name, module in self._modules.items(): # 对子模块进行遍历
if module is not None:
module.state_dict(destination=destination, prefix=prefix + name + '.', keep_vars=keep_vars)
for hook in self._state_dict_hooks.values():
hook_result = hook(self, destination, prefix, local_metadata)
if hook_result is not None:
destination = hook_result
return destination
8.load_state_dict
作用:从原先存储的字典中导入(获取)当前模块的参数和buffer,然后对所有子模块都会这样遍历
9.区分 _parameters、parameters()、named_parameters()
- _parameters返回的是当前模块(不包含子模块)的参数
- 调用parameters()可以返回当前模块和子模块的参数
- named_parameters将返回模块名称以及对应的参数值,更加清晰一点
10.区分 _modules 、named_modules()、 named_children()、modules()
- _modules返回的是一个字典,键是module的名称,值是module的具体情况(不包含自身,只有子模块)
- named_modules()返回了包含了自身的所有模块,含名称和具体情况
- named_children()返回的是一个个元组,是每个子模块,并且写明了名称
- modules()返回的是每个模块的具体情况,但没有名称
11.train
def train(self: T, mode: bool = True) -> T:
if not isinstance(mode, bool): # 判断是否是bool类型
raise ValueError("training mode is expected to be boolean")
self.training = mode # 设置True or False
for module in self.children(): # 对子模块也如此操作
module.train(mode)
return self
当设置 train = True or False 后,相应的,它的子模块也会相应地设置成True or False,那么就可能会影响到一些类的使用,比如 Dropout(因为dropout相当于它的子模块),dropout的运行逻辑就会发生变化(相应地,进入训练或验证模式):
class Dropout(_DropoutNd): # 这里的 _DropoutNd 继承自 Module 类
def forward(self, input: Tensor) -> Tensor:
return F.dropout(input, self.p, self.training, self.inplace) # self.training
12.eval
进入验证推理模型
def eval(self: T) -> T:
return self.train(False) # 调用train函数,并传入False
总结来说,只要在一个大模型中设置train=Ture or False就行,不需要额外设置dropout、BN之类的
主要参考:
- B站up主deep_thoughts讲解:深入剖析Pytorch的nn.Module源码
- nn.Module模块源码