1. 回文串
作为程序员,回文串这个词已经见怪不怪了,就是一个字符串正着读和反着读是一样的,形式如abcdcba、bbaabb。这里涉及到奇回文和偶回文,奇回文指回文串的字符数是奇数,偶回文指回文串的字符数是偶数。前面举的abcdcba就是奇回文,bbaabb就是偶回文。判断一个字符串是否是回文串很简单,只要从字符串的两端开始往中间扫描,全部匹配成功则是回文串,只要有一次匹配失败,那么就不是回文串。代码如下
// 没有对字符串为null或者空串的返回值进行考虑
static boolean Palindrome(String s){
for(int i = 0, j = s.length()-1; i < j; i , j--){
if(s.charAt(i) != s.charAt(j)){
return false;
}
}
return true;
}
2. 最长回文串
在我们了解回文串内容后,如果给你一个字符串,你能不能得到该字符串中的最长回文串呢?
2.1 暴力匹配法
最长回文串简单的解法就是暴力匹配法,依次判断所有字符数大于1个的子串是否回文串,并记录最长的那个回文串。如acbc字符串,得到字符数大于1的子串ac、cb、bc;acb、cbc;acbc,其中cbc是最长回文串。虽然暴力匹配法思路清晰、代码简单,但是如果字符串长度较长时,那么子串的数量是很庞大的,对于一个长度为n的字符串,它的子串有n(n-1)/2个,加上判断子串是否为回文串的时间复杂度是O(n),所以最终总的时间复杂度是O(n^3)左右。暴力匹配留给大家自行编写代码,博主就偷个懒不写了。
2.2 中心扩散法
中心扩散法是另一种回文串解决方法,算法思路是从字符串的第一个字符一直遍历到最后一个字符,每次从该字符往两边扫描,如果左右两边的值相等,那么往左右两边拓展,直至左右两边的值不相等或者越界,扫描结束,记录此时的左右边界下标,并且记录此时的回文串长度。该方法的时间消耗主要是遍历字符串的每个字符,以及每个字符需要向两边拓展扩散,所以总的时间复杂度为O(n^2)。
图解:以下以abcfcbd字符串遍历到 f 字符进行图解,如下图。
1. 当遍历abcfcbd字符串的 f 字符时,先令left和right都指向 f 字符。
2. 往左右拓展,可以拓展,left往左移,right往右移
3. 可以拓展,继续移动
4. 不可以继续拓展,结束,记录left和right的位置
代码
public String longestPalindrome(String s) {
int len = s.length();
if(len <= 1){
return s;
}
int max = 0;
int[] index = new int[2];
for(int i = 0; i < len-1; i ){
// 考虑奇数回文还是偶数回文,所以分别计算以i为中心,以i和i 1为中心两种方式的回文串
int[] f1 = findSub(s, i, i);
int[] f2 = findSub(s, i, i 1);
int f1Len = f1[1] - f1[0];
int f2Len = f2[1] - f2[0];
// 如果以i为中心的奇回文串长度更长并且大于前面记录的最大回文串长度max,更新max
// 如果以i和i 1为中心的偶回文串长度更长并且大于前面记录的最大回文串长度max,更新max
if((f1Len > f2Len) && (f1Len > max)){
index[0] = f1[0];
index[1] = f1[1];
max = f1Len;
}else if((f1Len <= f2Len) && (f2Len > max)){
index[0] = f2[0];
index[1] = f2[1];
max = f2Len;
}
}
return s.substring(index[0], index[1] 1);
}
static int[] findSub(String s, int left, int right){
// 如果是偶数回文,left和right不等,需要判断一下left和right的值是否相等
if(s.charAt(left) != s.charAt(right)){
return new int[]{left 1, left 1};
}
while((left >= 0) && (right <= s.length()-1) && (s.charAt(left) == s.charAt(right))){
left--;
right ;
}
return new int[]{left 1, right-1};
}
2.3 Manacher算法
Manacher算法是一种以O(n)时间复杂度得到最长回文串的算法,以该算法的发明者Manacher老先生名字命名。虽然该算法的解释网上较多,但是有点繁琐和难懂,博主尽量以自己小白的理解力详细地进行说明。我们接下来先说说Manacher算法的主要思想,它到底在哪里进行了优化?然后我们再上代码。接下来我们以dcbcdcbca字符串为例,请耐心阅读。
2.3.1. 对字符串dcbcdcbca先预处理。
在每个字符两旁插入分割符,可以是任意字符,因为博主一开始也觉得分隔符不能是字符串中出现的字符,那这里选取'a'字符作为分割符进行证明,预处理后得到如下字符串str2。
2.3.2. 记录每个字符的回文半径
遍历每个字符时,将每个字符可以向左右两边拓展的长度称为回文半径,使用val数组记录回文半径。则str2的第1个字符到第13个字符回文半径数据值如下图所示。
2.3.3 Manacher算法的优化之处
其实计算str2的第1个字符到第13个字符回文半径时Manacher也有优化,只是接下来更好讲解,所以现在分析。
当扫描到str2的第10个字符d时,此时的回文字符串是acabacadacabaca,如下图所示。
接下来我们要计算str2的第14个字符 b,正常情况下,我们以b为中心向两边拓展;Manacher算法的强大就是在此处进行了优化。
因为b处在axis和right之间,我们可以看看str2第14个b字符关于axis对称的第6个b字符它的回文半径是多少,为什么可以这样呢?
接下来看图解吧,原本以为自己理解了很好描述,但现在发现自己理解而已,要想描述清楚还是有点难,大家看看图解吧!
1. 步骤1
2. 步骤2
3. 步骤3
总结:Manacher算法进行优化的部分主要有两点:①字符串预处理,添加分割符;②利用回文串的对称信息,避免重复计算回文半径。
看来这种算法还是有些难描述的,大家见谅,还是只能多花点时间去消化,Manacher算法最重要一点就是利用对称信息。
代码
public String longestPalindrome(String s) {
int len = s.length();
int newLen = 2 * len 1;
// 字符串预处理,得到填充分隔符后的字符数组
char[] newStr = new char[newLen];
for(int i = 0; i < len; i ){
newStr[2*i] = 'a';
newStr[2*i 1] = s.charAt(i);
}
newStr[newLen-1] = 'a';
// ans是最长回文串的回文半径,ansIndex是最长回文串的对称中心
int[] val = new int[newLen];
int axis = 0;
int right = 0;
int ans = 0;
int ansIndex = 0;
for(int i = 0; i < newLen; i ){
// 如果当前遍历字符处于回文串的最远边界内,那么可以利用对称信息
if(i < right){
val[i] = Math.min(val[2*axis-i], right-i 1);
}else{
val[i] = 1;
}
// 没有越界,并且回文串向左右拓展成功,那么回文半径加1
while(i-val[i] >= 0 && i val[i] < newLen && newStr[i-val[i]] == newStr[i val[i]]){
val[i] ;
}
// 如果当前遍历字符的边界大于记录的最远边界,更新回文串的最远边界
if(i val[i]-1 > right){
right = i val[i]-1;
axis = i;
}
// 记录最长回文串的回文半径和对称中心
if(val[i] > ans){
ans = val[i];
ansIndex = i;
}
}
StringBuilder sb = new StringBuilder();
for(int i = ansIndex-ans 1; i < ansIndex ans-1; i ){
sb.append(newStr[ i]);
}
return sb.toString();
}
以下是力扣的运行结果