背景

事情是这样的,最近在做一个 emoji-search 的个人 Project,为了减少服务器的搭建及维护工作,我把 emoji 的 embedding 数据放到了本地,即 Android 设备上。这个文件的原始大小为 123M,使用 gzip 压缩之后,大小为 47.1M,文件每行都可以解析成一个 Json 的 Bean。文件的具体内容可以查看该 链接

// 文件行数为:3753
// embed 向量维度为:3072
{"emoji": "\ud83e\udd47", "message": "1st place medal", "embed": [-0.018469301983714104, -0.004823130089789629, ...]}
{"emoji": "\ud83e\udd48", "message": "2nd place medal", "embed": [-0.023217657580971718, -0.0019081177888438106, ...]}

emoji 的 embedding 数据,记录了每个 emoji 的 token 向量。用来做 emoji 的搜索。将用户输入的 embedding 和 emoji 的 embedding 数据做点积,得到点积较大的 emoji,即用户的搜索结果。

Android 测试机配置如下:

hw.cpu 高通 SDM765G hw.cpu.ncore 8
hw.device.name OPPO Reno3 Pro 5G
hw.ramSize 8G
image.androidVersion.api 33

小胆尝试

为了方便读取,我将文件放在了 raw 文件夹下,命名为 emoji_embeddings.gz。关键代码如下,这里我将 .gz 文件一次性加载到内存,然后逐行读取。

override suspend fun process(context: Context) = withContext(Dispatchers.IO) {
    context.resources.openRawResource(R.raw.emoji_embeddings).use { inputStream ->
        GZIPInputStream(inputStream).bufferedReader().use { bufferedReader ->
            bufferedReader.readLines().forEachIndexed { index, line ->
                val entity = gson.fromJson(line, EmojiJsonEntity::class.java)
                // process entity
            }
        }
    }
}

结果可想而知,由于文件比较大,读取文件到内存的时间大概在 13s 左右。

并且在读取的过程中,内存抖动比较严重,这非常影响用户体验。

将文件一次性加载到内存,占用的内存也比较大,大概在 260M 左右,内存紧张的情况下容易出现 OOM。

java json中大于号 json大小限制_数据


于是,接下来的工作,就是优化内存的使用和减少加载的耗时了。

优化内存使用

  • 逐行加载文件
    很显然,我们最好不要将文件一次性加载到内存中,这样内存占用比较大,容易 OOM,我们可以使用 ReaderuseLines API。类似于这样调用 bufferedReader().useLines{ } **,其原理为 Sequence + reader.readLine() 的实现。再使用 Flow 简单切一下线程,数据读取在 IO Dispatcher,数据处理在 Default Dispatcher。代码如下:
override suspend fun process(context: Context) = withContext(Dispatchers.Default) {
    flow {
        context.resources.openRawResource(R.raw.emoji_embeddings_json).use { inputStream ->
            GZIPInputStream(inputStream).use { gzipInputStream ->
                gzipInputStream.bufferedReader().useLines { lines ->
                    for (line in lines) {
                        emit(line)
                    }
                }
            }
        }
    }.flowOn(Dispatchers.IO)
        .collect {
            val entity = gson.fromJson(it, EmojiJsonEntity::class.java)
            // process entity
        }
}

但这样会导致另一个问题,那就是内存抖动。因为逐行加载到内存中,当前行使用完之后,就会等待 GC,这里暂时无法解决。

完成之后,加载时的内存可以从 260M 减少到 140M 左右,加载时间控制在 9s 左右。

java json中大于号 json大小限制_java json中大于号_02

  • 减少内存抖动
    通过查看代码,并使用 Profile 进行调试,我们可以发现,其实主要的 GC 操作频繁,主要是由这行代码导致的: line.toBean<EmojiJsonEntity>() 。这里会存在 EmojiJsonEntity 对象的创建操作,但是 EmojiJsonEntity 只作为中间变量进行存在和使用,所以创建完成之后,就会进行回收。那要怎么解决这个问题呢?
    笔者暂时没找到较好的解法,这里需要保证代码逻辑不过于复杂的同时,消除中间变量的创建。暂时先这样吧😜

减少加载耗时

  • 找到最长耗时路径
    测试下来,IO 大概耗时 3.8s,但是总的耗时在 9s。这里我指定了 IO 使用 IO 协程调度器,数据处理使用 Default 协程调度器,IO 和数据处理是并行的。所以总的来说,是数据处理在拖后腿。数据处理主要是这部分代码 line.toBean<EmojiJsonEntity>() 的耗时,使用 Gson 库进行一次 fromJson 的操作。这里我们一步一步来,先来解决 IO 耗时的问题。
  • 加快 IO 操作
    笔者暂时想到了以下两种处理方式:
  1. 单个流分段读取
    在 GZIP 文件中,数据被压缩成连续的块,并且每个块的压缩是相对于前一个块的数据进行的。这就意味我们不能只读取文件的一部分并解压它,因为我们需要前面的数据来正确解码当前的块。所以,对于 GZIP 文件来说,实现分段读取有一些困难。这个想法,暂时先搁置吧。
  2. 多个流分段读取
  • 同一个文件开启多个流
    回到 GZIP 的讨论,同一个文件开启多个流也是徒劳的。因为即使多个线程处理各自的流,然后每个线程处理该文件的一部分,这也需要每个流从头开始对 GZIP 文件进行解压,然后跳过自己无需处理的部分。这么算下来,其实并不能加快总的 IO 速度,同时也会造成 CPU 资源的浪费。
  • 将文件拆分成多个文件之后开启多个流
    考虑这样的一种实现方式:对原有的 GZIP 文件进行拆分,拆分成多个小的 GZIP 文件,使用多线程读取,利用多核 CPU 加快 IO。听起来似乎可行,我们赶紧实现一下:
override suspend fun process(context: Context) = withContext(Dispatchers.Default) {
    val mutex = Mutex()

    List(STREAM_SIZE) { i ->
        flow {
            val resId = getEmbeddingResId(i) // 获取当前的资源文件 Id
            context.resources.openRawResource(resId).use { inputStream ->
                GZIPInputStream(inputStream).use { gzipInputStream ->
                    gzipInputStream.bufferedReader().useLines { lines ->
                        for (line in lines) {
                            emit(line)
                        }
                    }
                }
            }
        }.flowOn(Dispatchers.IO)
    }.asFlow()
        .flattenMerge(STREAM_SIZE)
        .collect { data ->
            val entity = gson.fromJson(data, EmojiJsonEntity::class.java)
            mutex.withLock {
                // process entity
            }
        }
}

笔者将之前的 json.gz 拆分成了 5 个文件,每个文件启动一个流去加载。之后再将这 5 个流通过 flattenMerge 合并成一个流,来进行数据处理。由于 flattenMerge 有多线程操作,所以这里我们使用协程的 Mutex 加个锁,保证数据操作的原子性。

实际测试下来,如此操作的 IO 耗时在 2s,缩短为原来的一半,但总的耗时还是稳定在了 9s 左右,这多出来的 2s 具体花在哪里了暂时未知,咱接着优化一下数据处理吧😵💫。

java json中大于号 json大小限制_android_03

  • 缩短数据处理时间的方案分析
    先明确一下需求:我们需要将文件一次性加载到内存中,文件大小为 40M+,其中有每行都有一个 3072 个元素的 float 数组。了解了一圈下来,目前知道的可行的方案有两个,而且大概率需要更换数据结构和存储方式:
  1. 数据库(如 Room):在一些特定的情况下,使用数据库可能会有利,如当我们需要进行复杂查询、更新数据、或者需要随机访问数据的时候。如果需要使用数据库来缩短数据处理时间,那么我们需要在写入时就处理好数据格式,比如当前情况下,我们需要将 float 数组使用 BLOB 字段来存储。然而,在当前需求下,我们的数据相对简单,且只需要进行读操作。而且,我们的数据包含大量的浮点数数组,使用 BLOB 字段来存储也会较为复杂。因此,数据库可能不是最理想的选择。
  2. Protocol Buffers (PB):PB 是一个二进制格式,比文本格式(如 JSON)更紧凑,更快,特别擅长存储和读取大量的数值数据(如 embed 数组)。我们的需求主要是读取数据,并且需要一次性将整个文件加载到内存中。因此,PB 可能是一个不错的选择。虽然 PB 数据不易于阅读和编辑,也不适合需要复杂查询或随机访问的情况。

    如上是 PB 和 Json 序列化和反序列化的对比 ref。可以看到,在一次反序列化操作的情况下, PB 是 Json 的 5 倍。次数越多,差距越大。
    关于为什么二进制文件(PB)会比文本文件(Json) 体积更小,读写更快。这里就不过多赘述了,笔者个人理解,简单来说,是信息密度的差异,具体的大家可以去搜索,了解更多。

总的来说,考虑到我们当前的需求(主要是读操作,且文件较大),使用 Protocol Buffers 会比较合适。

  • 使用 Protocol Buffers (PB) 存储 embedding 数据
    PB 文件比 Json 文件的读取要复杂不少,首先我们需要定义一下 proto 文件的格式。
    这里的 repeated float 可以理解成 float 类型的 List
// emoji_embedding.proto
syntax = "proto3";

message EmojiEmbedding {
    string emoji = 1;
    string message = 2;
    repeated float embed = 3;
}

定义好之后,就可以进行数据的序列化操作了。值得一提的是,pb.gz 文件比 json.gz 文件小了一倍,只有 21.5M。在数据序列化的时候,笔者使用了 4 字节(Byte) 来存储单条数据的长度,方便之后的数据反序列化操作。这里我们直接看一下 Android 反序列化 PB 文件的代码:

override suspend fun process(context: Context) = withContext(Dispatchers.Default) {
    flow {
        context.resources.openRawResource(R.raw.emoji_embeddings_proto).use { inputStream ->
            GZIPInputStream(inputStream).buffered().use { gzipInputStream ->
                DataInputStream(gzipInputStream).use { dataInputStream ->
                    try {
                        while (true) {
						    // 使用 4 字节存储文件长度,即一个 int 类型的长度,所以这里直接 readInt()
                            val length = dataInputStream.readInt()
                            val byteArray = ByteArray(length)
                            dataInputStream.readFully(byteArray) // read message content

                            emit(byteArray)
                        }
                    } catch (e: EOFException) {
                        Log.d(TAG, "process: EOFException, end of file.")
                    }
                }
            }
        }
    }.flowOn(Dispatchers.IO)
        .buffer()
        .flatMapMerge { byteArray ->
            flow { emit(readEmojiData(byteArray)) }
        }.collect {}
}

private fun readEmojiData(byteArray: ByteArray) {
    val entity = EmojiEmbeddingOuterClass.EmojiEmbedding.parseFrom(byteArray)
    // process entity
}

这里因为有生成的 EmojiEmbeddingOuterClass 代码,所以解析起来还算方便,解析完操作 entity 即可。值得注意的是,我使用 flatMapMerge 来实现多线程处理,而不是使用 launch/async ,这里的目的是减少协程的创建,减少上下文的切换,减少并发数,来提高数据处理的速度。因为实际测试下来,flatMapMerge 的速度会更快。

那么这么做的实际效果如何呢?1.5s!比 Json 实在是好太多了 (这里由于开了 build with Profile,会比实际的慢一点)。稳定下来时,内存占用 170 M。

java json中大于号 json大小限制_json_04

  • 使用多个拆分的 Protocol Buffers (PB) 文件
    到这里,差不多要结束了,但是我们还差了一点点,就是将拆分的 pb.gz 文件进行多线程 IO 读取。代码就不贴了,都是差不多的逻辑。
    实际测试和单个 pb 文件差不太多,这里 IO 是会快一些的,猜测是 IO 占用了数据处理的 CPU 吧,具体原因暂时没有去深究了。

总结

大文件的读写,咱还是老老实实用字节码文件存储吧。小文件可以使用 Json,反序列化速度够用,可读性也可以有明显的提升。具体的性能对比,图表如下:

json.gz + 一次性加载

json.gz + 逐行加载

拆分 json.gz + 逐行加载

加载 pb.gz

加载拆分 pb.gz

耗时

13s

9s

9s

1.5s

1.5s

内存(加载后)

260M

140M

148M

170M

170M

用到的资源文件:emoji-search/releases/tag/v1.0.1-beta

源代码可查看:Github

REFERENCE

深入理解gzip原理 - 简书