>[danger]# '==' VS 'is'
等于(==)和 is 是 Python 中对象比较常用的两种方式。简单来说,
>[success]'=='操作符比较对象之间的值是否相等,比如下面的例子,表示比较变量 a 和 b 所指向的值是否相等。
a == b
而'is'操作符比较的是对象的身份标识是否相等,即它们是否是同一个对象,是否指向同一个内存地址。
在 Python 中,每个对象的身份标识,都能通过函数 id(object) 获得。因此,'is'操作符,相当于比较对象之间的 ID 是否相等,我们来看下面的例子:
>[success]~~~
>a = 10
>b = 10
>a == b
>True
>id(a)
>4427562448
>id(b)
>4427562448
>a is b
>True
这里,首先 Python 会为 10 这个值开辟一块内存,然后变量 a 和 b 同时指向这块内存区域,即 a 和 b 都是指向 10 这个变量,因此 a 和 b 的值相等,id 也相等,a == b和a is b都返回 True。
>[success]不过,需要注意,对于整型数字来说,以上a is b为 True 的结论,只适用于 -5 到 256 范围内的数字。比如下面这个例子:
>[success]~~~
>a = 257
>b = 257
>a == b
>True
>id(a)
>4473417552
>id(b)
>4473417584
>a is b
>False
这里我们把 257 同时赋值给了 a 和 b,可以看到a == b仍然返回 True,因为 a 和 b 指向的值相等。但奇怪的是,a is b返回了 false,并且我们发现,a 和 b 的 ID 不一样了,这是为什么呢?
>[success]事实上,出于对性能优化的考虑,Python 内部会对 -5 到 256 的整型维持一个数组,起到一个缓存的作用。这样,每次你试图创建一个 -5 到 256 范围内的整型数字时,Python 都会从这个数组中返回相对应的引用,而不是重新开辟一块新的内存空间。
但是,如果整型数字超过了这个范围,比如上述例子中的 257,Python 则会为两个 257 开辟两块内存区域,因此 a 和 b 的 ID 不一样,a is b就会返回 False 了。
通常来说,在实际工作中,当我们比较变量时,使用'=='的次数会比'is'多得多,因为我们一般更关心两个变量的值,而不是它们内部的存储地址。但是,当我们比较一个变量与一个单例(singleton)时,通常会使用'is'。一个典型的例子,就是检查一个变量是否为 None:
>[success]~~~
>if a is None:
> ...
>if a is not None:
> ...
>[success]这里注意,比较操作符'is'的速度效率,通常要优于'=='。因为'is'操作符不能被重载,这样,Python 就不需要去寻找,程序中是否有其他地方重载了比较操作符,并去调用。执行比较操作符'is',就仅仅是比较两个变量的 ID 而已。
但是'=='操作符却不同,执行a == b相当于是去执行a.__eq__(b),而 Python 大部分的数据类型都会去重载__eq__这个函数,其内部的处理通常会复杂一些。比如,对于列表,__eq__函数会去遍历列表中的元素,比较它们的顺序和值是否相等。
不过,对于不可变(immutable)的变量,如果我们之前用'=='或者'is'比较过,结果是不是就一直不变了呢?
答案自然是否定的。我们来看下面一个例子:
>[success]~~~
>t1 = (1, 2, [3, 4])
>t2 = (1, 2, [3, 4])
>t1 == t2
>True
>t1[-1].append(5)
>t1 == t2
>False
我们知道元组是不可变的,但元组可以嵌套,它里面的元素可以是列表类型,列表是可变的,所以如果我们修改了元组中的某个可变元素,那么元组本身也就改变了,之前用'is'或者'=='操作符取得的结果,可能就不适用了。
>[danger]# 总结
1. 比较操作符'=='表示比较对象间的值是否相等,而'is'表示比较对象的标识是否相等,即它们是否指向同一个内存地址。
2. 比较操作符'is'效率优于'==',因为'is'操作符无法被重载,执行'is'操作只是简单的获取对象的 ID,并进行比较;而'=='操作符则会递归地遍历对象的所有值,并逐一比较。