作为一个习惯了使用matlab的人,开始总是习惯性的把这两个当成一种东西,按照matlab中的矩阵去处理,发现一堆问题,调了一些小bug之后,这里做一个小总结。
首先简单说明一下python中的数据类型:
在 python 内建对象中,数组有三种形式:
list 列表:[1, 2, 3]
Tuple 元组:(1, 2, 3, 4, 5)
Dict 字典:{A:1, B:2}
其中,元组与列表相似,不同之处在于元组的元素不能修改。而字典由键和值构成。
python 标准类针对数组的处理局限于 1 维,并仅提供少量的功能。
NumPy的数组类被称作ndarray。通常被称作数组。注意numpy.array和标准Python库类array.array并不相同,后者只处理一维数组和提供少量功能。更多重要ndarray对象属性有:
而 Numpy 最核心且最重要的一个特性就是 ndarray 多维数组对象,它区别于 python 的标准类,拥有对高维数组的处理能力,这也是数值计算过程中缺一不可的重要特性。对于python而言,数组与矩阵两个概念,都是由Numpy库引出来(难怪Numpy也叫科学计算库)。
然后简单说明一下在python中数组和矩阵的区别:
Numpy matrices必须是2维的,但是 numpy arrays (ndarrays) 可以是多维的(1D,2D,3D····ND)。Matrix是Array的一个小的分支,包含于Array。所以matrix 拥有array的所有特性。
关于矩阵:
1.numpy的导入和使用
from numpy import *;#导入numpy的库函数
import numpy as np; #这个方式使用numpy的函数时,需要以np.开头。
2.矩阵的创建
由一维或二维数据创建矩阵
>>> from numpy import *
>>> a1=array([1,2,3])
>>> a1
array([1, 2, 3])
>>> a1=mat(a1)
>>> a1
matrix([[1, 2, 3]])
>>> shape(a1)
(1, 3)
>>> b=matrix([1,2,3])
>>> shape(b)
(1, 3)
创建常见的矩阵
>>>data1=mat(zeros((3,3))) #创建一个3*3的零矩阵,矩阵这里zeros函数的参数是一个tuple类型(3,3)
>>> data1
matrix([[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.]])
>>>data2=mat(ones((2,4))) #创建一个2*4的1矩阵,默认是浮点型的数据,如果需要时int类型,可以使用dtype=int
>>> data2
matrix([[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.]])
>>>data3=mat(random.rand(2,2)) #这里的random模块使用的是numpy中的random模块,random.rand(2,2)创建的是一个二维数组,需要将其转换成#matrix
>>> data3
matrix([[ 0.57341802, 0.51016034],
[ 0.56438599, 0.70515605]])
>>>data4=mat(random.randint(10,size=(3,3))) #生成一个3*3的0-10之间的随机整数矩阵,如果需要指定下界则可以多加一个参数
>>> data4
matrix([[9, 5, 6],
[3, 0, 4],
[6, 0, 7]])
>>>data5=mat(random.randint(2,8,size=(2,5))) #产生一个2-8之间的随机整数矩阵
>>> data5
matrix([[5, 4, 6, 3, 7],
[5, 3, 3, 4, 6]])
>>>data6=mat(eye(2,2,dtype=int)) #产生一个2*2的对角矩阵
>>> data6
matrix([[1, 0],
[0, 1]])
a1=[1,2,3]
a2=mat(diag(a1)) #生成一个对角线为1、2、3的对角矩阵
>>> a2
matrix([[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
3.常见的矩阵运算
矩阵相乘
>>>a1=mat([1,2]);
>>>a2=mat([[1],[2]]);
>>>a3=a1*a2 #1*2的矩阵乘以2*1的矩阵,得到1*1的矩阵
>>> a3
matrix([[5]])
矩阵点乘(矩阵对应元素相乘)
>>>a1=mat([1,1]);
>>>a2=mat([2,2]);
>>>a3=multiply(a1,a2)
>>> a3
matrix([[2, 2]])
矩阵点乘
>>>a1=mat([2,2]);
>>>a2=a1*2>>>a2
matrix([[4, 4]])
矩阵求逆
>>>a1=mat(eye(2,2)*0.5)
>>> a1
matrix([[ 0.5, 0. ],
[ 0. , 0.5]])
>>>a2=a1.I #求矩阵matrix([[0.5,0],[0,0.5]])的逆矩阵
>>> a2
matrix([[ 2., 0.],
[ 0., 2.]])
矩阵转置
>>> a1=mat([[1,1],[0,0]])
>>> a1
matrix([[1, 1],
[0, 0]])
>>> a2=a1.T
>>> a2
matrix([[1, 0],
[1, 0]])
计算矩阵对应行列的最大、最小值、和
>>>a1=mat([[1,1],[2,3],[4,2]])
>>> a1
matrix([[1, 1],
[2, 3],
[4, 2]])
>>>a2=a1.sum(axis=0) #列和,这里得到的是1*2的矩阵
>>> a2
matrix([[7, 6]])
>>>a3=a1.sum(axis=1) #行和,这里得到的是3*1的矩阵
>>> a3
matrix([[2],
[5],
[6]])
>>>a4=sum(a1[1,:]) #计算第一行所有列的和,这里得到的是一个数值
>>> a4
5 #第0行:1+1;第2行:2+3;第3行:4+2
>>>a1.max() #计算a1矩阵中所有元素的最大值,这里得到的结果是一个数值
4
>>>a2=max(a1[:,1]) #计算第二列的最大值,这里得到的是一个1*1的矩阵
>>> a2
matrix([[3]])
>>>a1[1,:].max() #计算第二行的最大值,这里得到的是一个一个数值
3
>>>np.max(a1,0) #计算所有列的最大值,这里使用的是numpy中的max函数
matrix([[4, 3]])
>>>np.max(a1,1) #计算所有行的最大值,这里得到是一个矩阵
matrix([[1],
[3],
[4]])
>>>np.argmax(a1,0) #计算所有列的最大值对应在该列中的索引
matrix([[2, 1]])
>>>np.argmax(a1[1,:]) #计算第二行中最大值对应在该行的索引
矩阵的分隔和合并
#矩阵的分隔
>>>a=mat(ones((3,3)))
>>> a
matrix([[ 1., 1., 1.],
[ 1., 1., 1.],
[ 1., 1., 1.]])
>>>b=a[1:,1:] #分割出第二行以后的行和第二列以后的列的所有元素
>>> b
matrix([[ 1., 1.],
[ 1., 1.]])
#矩阵的合并
>>>a=mat(ones((2,2)))
>>> a
matrix([[ 1., 1.],
[ 1., 1.]])
>>>b=mat(eye(2))
>>> b
matrix([[ 1., 0.],
[ 0., 1.]])
>>>c=vstack((a,b)) #按列合并,即增加行数
>>> c
matrix([[ 1., 1.],
[ 1., 1.],
[ 1., 0.],
[ 0., 1.]])
>>>d=hstack((a,b)) #按行合并,即行数不变,扩展列数
>>> d
matrix([[ 1., 1., 1., 0.],
[ 1., 1., 0., 1.]])
关于数组和矩阵的创建及其相互转化:
数组的创建:
import numpy as np
c=np.array([[4, 3], [2, 1]])
d=np.array([[1, 2], [3, 4]])
print(c*d)
# [[4 6]
# [6 4]]
矩阵的创建:
import numpy as np
a=np.mat('4 3; 2 1')
b=np.mat('1 2; 3 4')
print(a)
# [[4 3]
# [2 1]]
我们可以通过两条命令轻松的实现二者之间的转换:
#转化为矩阵
np.asmatrix
#转化为数组
np.asarray
对我来说,numpy 中的array与numpy中的matrix,matlab中的matrix的最大的不同是,在做归约运算时,array的维数会发生变化,但matrix总是保持为2维。
注:测试的遇到一个很奇怪的现象,用min()函数对数组求最小值是没有什么问题的,但是如果是矩阵,单纯取一列一样可以求,如果是取一行的话却直接得到原来的一行数,本以为是和matlab一样默认对列数据处理,可是又不能对多行或者多列处理,真是觉得很奇怪,欢迎来和我讨论这个问题!!!