IRMA是一款类似于VT的杀软检测工具,他可以集成大量的杀软针对文件进行静态特征检测,框架写的还是挺不错的,这里剖析下他的源码。

ios一键新机源码_ci

先上一张官方的原型图。IRMA主要有三个部分组成,FRONTEND、BRAIN、PROBES,其中FRONTEND主要负责前端接口,BRAIN负责任务调度以及文件传输,PROBES是核心的检测模块,会部署很多杀软进行文件检测。

IRMA Probes使用celery进行分布式任务调度,先从主函数irma\probe\probe\tasks.py开始分析。

# 创建引擎插件类
manager = PluginManager()
# 发掘引擎插件
manager.discover(plugin_path)

IRMA中的检测引擎使用自注册的方式增加杀软。简单跟踪下discover函数。

def discover(self, path=os.path.dirname(__file__), prefix=None):
        dirname = os.path.basename(path)
        if prefix is None:
            prefix = dirname
        for importer, name, ispkg in pkgutil.walk_packages([path]):
            try:
                pkg_name = '%s.%s' % (prefix, name)

                if pkg_name not in sys.modules:
                    __import__(pkg_name)
                if ispkg:
                    self.discover(os.path.join(path, name), pkg_name)
            except PluginFormatError as error:
                logging.warn(' *** [{name}] Plugin error: {error}'
                             ''.format(name=name, error=error))
            except PluginLoadError as error:
                logging.warn(' *** [{name}] Plugin failed to load: {error}'
                             ''.format(name=name, error=error))
            except PluginCrashed as error:
                logging.warn(' *** [{name}] Plugin crashed: {error}'
                             ''.format(name=name, error=error))
            except ImportError as error:
                logging.exception(error)

很简单,就是discover函数接受一个路径参数,然后遍历该路径,通过递归的方式将各个检测Model动态import到环境中,walk_packages函数的作用就是查找所有的python Module。

这里需要注意一点,在调用__import__函数时,会自注册该检测引擎插件,因为每一个插件都使用了metaclass元类,那么import的类本质上就是一个创建的对象,自然会执行元类的__init__函数,元类PluginMetaClass代码如下:

class PluginMetaClass(type):

    [skip]
    ...
    ##########################################################################
    # Plugin methods
    ##########################################################################

    def __init__(cls, name, bases, attrs):
        # small hack to skip PluginBase class when initializing
        if name == 'PluginBase':
            return
        # perform some verifications
        if not cls._plugin_name_:
            raise PluginFormatError("Invalid plugin_name")
        if not cls._plugin_display_name_:
            raise PluginFormatError("Invalid plugin_display_name")
        if not cls._plugin_author_:
            raise PluginFormatError("Invalid plugin_author")
        if not cls._plugin_version_:
            raise PluginFormatError("Invalid plugin_version")
        if not cls._plugin_category_:
            raise PluginFormatError("Invalid plugin_category")
        # try to register plugin
        PluginManager().register_plugin(cls)

可以看到,元类中调用了 PluginManager().register_plugin(cls)进行注册该插件,注册过程为:

@classmethod
    def register_plugin(cls, plugin):
        logging.debug('Found plugin {name}. Trying to register it.'
                      ''.format(name=plugin.plugin_name))
        # check for dependencies
        for dependency in plugin.plugin_dependencies:
            try:
                dependency.check()
            except DependencyMissing as error:
                # get plugin info
                plugin_name = plugin.plugin_name
                # get dependency info
                dependency = error.dependency
                dependency_name = dependency.dependency_name
                dependency_type = dependency.__class__.__name__
                dependency_help = dependency.help
                # warn user and stop loading
                warning = '{name} miss dependencies: {deps} ({type}).'
                if dependency_help is not None:
                    warning += ' {help}'
                raise PluginLoadError(warning.format(type=dependency_type,
                                                     name=plugin_name,
                                                     deps=dependency_name,
                                                     help=dependency_help))
        # if required, run additionnal verifications on the plugin
        if hasattr(plugin, 'verify'):
            try:
                plugin.verify()
            except Exception as error:
                raise PluginLoadError(error)
        # add plugin to internal list
        if plugin.plugin_canonical_name in cls.__plugins_cls:
            logging.debug('Plugin {name} already registered'
                          ''.format(name=plugin.plugin_name))
        else:
            cls.__plugins_cls[plugin.plugin_canonical_name] = plugin
            # mark plugin as active
            if plugin.plugin_active is None:
                plugin.plugin_active = True
            logging.debug('Plugin {name} registered, active set as {state}'
                          ''.format(name=plugin.plugin_name,
                                    state=plugin.plugin_active))

注册过程为,先是当前的运行平台是否满足插件运行条件,其次调用verify()函数判断插件是否存在,默认情况下只是进行检测引擎可执行路径的判断。如果上面两个步骤都没有问题,就会增加插件module至插件列表中。

# determine dynamically queues to connect to using plugin names
probes = manager.get_all_plugins()
[skip]
...
for p in probes:
    # register probe on Brain
    log.info('Register probe %s' % p.plugin_name)
    delay = 1
    while True:
        try:
            task = register_probe(p.plugin_name,
                                  p.plugin_display_name,
                                  p.plugin_category,
                                  p.plugin_mimetype_regexp)
            task.get(timeout=10)
            break
        except (TimeoutError, IrmaTaskError):
            log.error("Registering on brain failed retry in %s seconds...",
                      delay)
            time.sleep(delay)
            delay = min([2*delay, RETRY_MAX_DELAY])
            pass

至此检测引擎插件自注册完毕,后面便将插件列表赋值给probes,并通知BRAIN,我可以进行哪些方面的检测,之后开始等待任务,并执行相应的插件扫描。

@probe_app.task(acks_late=True)
def probe_scan(frontend, filename):
    routing_key = current_task.request.delivery_info['routing_key']
    if routing_key == 'dlq':
        log.error("filename %s scan timeout", filename)
        raise ValueError("Timeout")
    try:
        tmpname = None
        # retrieve queue name and the associated plugin
        probe = probes[routing_key]
        log.debug("filename %s probe %s", filename, probe)
        (fd, tmpname) = tempfile.mkstemp()
        os.close(fd)
        ftp_ctrl.download_file(frontend, filename, tmpname)
        results = probe.run(tmpname)
        handle_output_files(results, frontend, filename)
        return bytes_to_utf8(results)
    except Exception as e:
        log.exception(type(e).__name__ + " : " + str(e))
        raise probe_scan.retry(countdown=2, max_retries=3, exc=e)
    finally:
        # Some AV always delete suspicious file
        if tmpname is not None and os.path.exists(tmpname):
            log.debug("filename %s probe %s removing tmp_name %s",
                      filename, probe, tmpname)
            os.remove(tmpname)

检测过程为: 先是获取probe检测引擎,之后通过ftp_ctrl下载文件,调用probe.run(tmpname)进行扫描,之后处理结果并返回。

OK,整体的执行过程大概就是这样,其中的分布式celery,由于没有实践过可能说的也不是很清晰,下一篇讲分析下每个插件又是如何进行检测分析的,以及如何高效的集成一个自定义检测引擎。