分析和实现基于RSSI(接收信号强度指示)修正的定位算法

% 基于RSSI修正的定位算法分析
clear; clc; close all;

%% 1. 参数设置
fprintf('设置定位系统参数...\n');

% 环境参数
n = 2.5;                % 路径损耗指数 (2-4之间,自由空间为2)
sigma_shadow = 4;       % 阴影衰落标准差 (dB)
d0 = 1;                 % 参考距离 (m)
PL_d0 = -40;            % 参考距离处的路径损耗 (dBm)

% 锚节点(基站)位置
anchor_positions = [0, 0;    % 锚节点1
                   10, 0;   % 锚节点2
                   0, 10;   % 锚节点3
                   10, 10]; % 锚节点4

num_anchors = size(anchor_positions, 1);

% 目标节点真实位置
target_position = [4, 6];

% RSSI测量参数
num_measurements = 100;  % 每个锚节点的测量次数
measurement_interval = 1; % 测量间隔 (秒)

%% 2. RSSI测量模型
fprintf('模拟RSSI测量...\n');

% 计算真实距离
true_distances = sqrt(sum((anchor_positions - target_position).^2, 2));

% 生成RSSI测量值
rssi_measurements = zeros(num_anchors, num_measurements);
for i = 1:num_anchors
    % 理论路径损耗
    PL = PL_d0 + 10 * n * log10(true_distances(i)/d0);
    
    % 添加阴影衰落
    shadowing = sigma_shadow * randn(1, num_measurements);
    
    % 生成RSSI测量值 (假设发射功率为0dBm)
    rssi_measurements(i, :) = -PL + shadowing;
end

% 显示RSSI测量结果
figure;
for i = 1:num_anchors
    subplot(2, 2, i);
    plot(1:num_measurements, rssi_measurements(i, :), 'b-');
    hold on;
    plot([1, num_measurements], [mean(rssi_measurements(i, :)), mean(rssi_measurements(i, :))], 'r--', 'LineWidth', 2);
    xlabel('测量次数');
    ylabel('RSSI (dBm)');
    title(sprintf('锚节点 %d 的RSSI测量', i));
    legend('测量值', '平均值');
    grid on;
end

%% 3. 基本距离估计
fprintf('进行基本距离估计...\n');

% 从RSSI估计距离
estimated_distances = zeros(num_anchors, 1);
distance_errors = zeros(num_anchors, 1);

for i = 1:num_anchors
    % 使用平均RSSI值
    avg_rssi = mean(rssi_measurements(i, :));
    
    % 路径损耗模型: PL = PL0 + 10n log10(d/d0)
    % 因此: d = d0 * 10^((PL - PL0)/(10n))
    estimated_distances(i) = d0 * 10^((avg_rssi - PL_d0)/(10*n));
    
    % 计算距离误差
    distance_errors(i) = abs(estimated_distances(i) - true_distances(i));
end

% 显示距离估计结果
fprintf('\n距离估计结果:\n');
for i = 1:num_anchors
    fprintf('锚节点 %d: 真实距离=%.2fm, 估计距离=%.2fm, 误差=%.2fm\n', ...
            i, true_distances(i), estimated_distances(i), distance_errors(i));
end

%% 4. 基本定位算法 (最小二乘法)
fprintf('\n执行基本定位算法...\n');

% 最小二乘定位
A = zeros(num_anchors-1, 2);
b = zeros(num_anchors-1, 1);

for i = 1:num_anchors-1
    A(i, 1) = 2*(anchor_positions(i+1, 1) - anchor_positions(1, 1));
    A(i, 2) = 2*(anchor_positions(i+1, 2) - anchor_positions(1, 2));
    
    b(i) = (anchor_positions(i+1, 1)^2 + anchor_positions(i+1, 2)^2) - ...
           (anchor_positions(1, 1)^2 + anchor_positions(1, 2)^2) + ...
           estimated_distances(1)^2 - estimated_distances(i+1)^2;
end

% 求解最小二乘问题
basic_position = (A' * A) \ (A' * b);

% 计算定位误差
basic_error = norm(basic_position' - target_position);
fprintf('基本定位结果: [%.2f, %.2f], 误差=%.2fm\n', ...
        basic_position(1), basic_position(2), basic_error);

%% 5. RSSI修正技术
fprintf('\n应用RSSI修正技术...\n');

% 方法1: 滑动平均滤波
window_size = 10;
filtered_rssi = zeros(num_anchors, num_measurements);

for i = 1:num_anchors
    for j = 1:num_measurements
        start_idx = max(1, j - window_size + 1);
        filtered_rssi(i, j) = mean(rssi_measurements(i, start_idx:j));
    end
end

% 方法2: 卡尔曼滤波修正
% 初始化卡尔曼滤波器
Q = 0.1; % 过程噪声协方差
R = sigma_shadow^2; % 测量噪声协方差

kalman_rssi = zeros(num_anchors, num_measurements);
x_est = zeros(num_anchors, 1);
P_est = ones(num_anchors, 1);

for i = 1:num_anchors
    % 初始状态
    x_est(i) = rssi_measurements(i, 1);
    P_est(i) = 1;
    
    kalman_rssi(i, 1) = x_est(i);
    
    for j = 2:num_measurements
        % 预测步骤
        x_pred = x_est(i);
        P_pred = P_est(i) + Q;
        
        % 更新步骤
        K = P_pred / (P_pred + R);
        x_est(i) = x_pred + K * (rssi_measurements(i, j) - x_pred);
        P_est(i) = (1 - K) * P_pred;
        
        kalman_rssi(i, j) = x_est(i);
    end
end

% 显示RSSI修正结果
figure;
for i = 1:num_anchors
    subplot(2, 2, i);
    plot(1:num_measurements, rssi_measurements(i, :), 'b-', 'LineWidth', 0.5);
    hold on;
    plot(1:num_measurements, filtered_rssi(i, :), 'g-', 'LineWidth', 1.5);
    plot(1:num_measurements, kalman_rssi(i, :), 'r-', 'LineWidth', 1.5);
    xlabel('测量次数');
    ylabel('RSSI (dBm)');
    title(sprintf('锚节点 %d 的RSSI修正', i));
    legend('原始', '滑动平均', '卡尔曼滤波');
    grid on;
end

%% 6. 基于修正RSSI的定位
fprintf('\n执行基于修正RSSI的定位...\n');

% 使用卡尔曼滤波修正的RSSI进行定位
corrected_distances = zeros(num_anchors, 1);

for i = 1:num_anchors
    % 使用卡尔曼滤波后的RSSI
    avg_corrected_rssi = kalman_rssi(i, end);
    corrected_distances(i) = d0 * 10^((avg_corrected_rssi - PL_d0)/(10*n));
end

% 使用修正后的距离进行定位
A_corrected = zeros(num_anchors-1, 2);
b_corrected = zeros(num_anchors-1, 1);

for i = 1:num_anchors-1
    A_corrected(i, 1) = 2*(anchor_positions(i+1, 1) - anchor_positions(1, 1));
    A_corrected(i, 2) = 2*(anchor_positions(i+1, 2) - anchor_positions(1, 2));
    
    b_corrected(i) = (anchor_positions(i+1, 1)^2 + anchor_positions(i+1, 2)^2) - ...
                     (anchor_positions(1, 1)^2 + anchor_positions(1, 2)^2) + ...
                     corrected_distances(1)^2 - corrected_distances(i+1)^2;
end

% 求解最小二乘问题
corrected_position = (A_corrected' * A_corrected) \ (A_corrected' * b_corrected);

% 计算定位误差
corrected_error = norm(corrected_position' - target_position);
fprintf('修正定位结果: [%.2f, %.2f], 误差=%.2fm\n', ...
        corrected_position(1), corrected_position(2), corrected_error);

%% 7. 加权最小二乘定位
fprintf('\n执行加权最小二乘定位...\n');

% 基于距离不确定性分配权重
weights = 1 ./ (corrected_distances.^2); % 距离越远,权重越小
weights = weights / sum(weights); % 归一化

% 构建加权最小二乘问题
A_weighted = zeros(num_anchors-1, 2);
b_weighted = zeros(num_anchors-1, 1);
W = zeros(num_anchors-1, num_anchors-1);

for i = 1:num_anchors-1
    A_weighted(i, 1) = 2*(anchor_positions(i+1, 1) - anchor_positions(1, 1));
    A_weighted(i, 2) = 2*(anchor_positions(i+1, 2) - anchor_positions(1, 2));
    
    b_weighted(i) = (anchor_positions(i+1, 1)^2 + anchor_positions(i+1, 2)^2) - ...
                    (anchor_positions(1, 1)^2 + anchor_positions(1, 2)^2) + ...
                    corrected_distances(1)^2 - corrected_distances(i+1)^2;
    
    % 权重矩阵 (使用几何平均权重)
    W(i, i) = sqrt(weights(1) * weights(i+1));
end

% 求解加权最小二乘问题
weighted_position = (A_weighted' * W * A_weighted) \ (A_weighted' * W * b_weighted);

% 计算定位误差
weighted_error = norm(weighted_position' - target_position);
fprintf('加权定位结果: [%.2f, %.2f], 误差=%.2fm\n', ...
        weighted_position(1), weighted_position(2), weighted_error);

%% 8. 非线性优化定位
fprintf('\n执行非线性优化定位...\n');

% 使用非线性最小二乘优化
options = optimoptions('lsqnonlin', 'Display', 'off');
initial_guess = [5, 5]; % 初始猜测

% 定义目标函数
fun = @(x) sqrt(sum((anchor_positions - x).^2, 2)) - corrected_distances;

% 执行非线性优化
optimized_position = lsqnonlin(fun, initial_guess, [], [], options);

% 计算定位误差
optimized_error = norm(optimized_position - target_position);
fprintf('优化定位结果: [%.2f, %.2f], 误差=%.2fm\n', ...
        optimized_position(1), optimized_position(2), optimized_error);

%% 9. 结果可视化
fprintf('\n可视化定位结果...\n');

% 绘制锚节点和目标节点
figure;
plot(anchor_positions(:, 1), anchor_positions(:, 2), 'ks', 'MarkerSize', 10, 'MarkerFaceColor', 'k');
hold on;
plot(target_position(1), target_position(2), 'ro', 'MarkerSize', 10, 'MarkerFaceColor', 'r');

% 绘制定位结果
plot(basic_position(1), basic_position(2), 'b*', 'MarkerSize', 10);
plot(corrected_position(1), corrected_position(2), 'g*', 'MarkerSize', 10);
plot(weighted_position(1), weighted_position(2), 'm*', 'MarkerSize', 10);
plot(optimized_position(1), optimized_position(2), 'c*', 'MarkerSize', 10);

% 绘制误差圆
theta = linspace(0, 2*pi, 100);
for i = 1:num_anchors
    x_circle = anchor_positions(i, 1) + corrected_distances(i) * cos(theta);
    y_circle = anchor_positions(i, 2) + corrected_distances(i) * sin(theta);
    plot(x_circle, y_circle, '--', 'Color', [0.5, 0.5, 0.5], 'LineWidth', 0.5);
end

% 设置图形属性
xlabel('X坐标 (m)');
ylabel('Y坐标 (m)');
title('基于RSSI修正的定位结果');
legend('锚节点', '真实位置', '基本定位', '修正定位', '加权定位', '优化定位', '距离估计');
axis equal;
grid on;

% 添加误差文本
text(0.5, -2, sprintf('基本定位误差: %.2fm', basic_error), 'Color', 'b');
text(0.5, -3, sprintf('修正定位误差: %.2fm', corrected_error), 'Color', 'g');
text(0.5, -4, sprintf('加权定位误差: %.2fm', weighted_error), 'Color', 'm');
text(0.5, -5, sprintf('优化定位误差: %.2fm', optimized_error), 'Color', 'c');

%% 10. 性能统计分析
fprintf('\n进行性能统计分析...\n');

% 多次运行模拟以获取统计结果
num_simulations = 100;
errors_basic = zeros(num_simulations, 1);
errors_corrected = zeros(num_simulations, 1);
errors_weighted = zeros(num_simulations, 1);
errors_optimized = zeros(num_simulations, 1);

for sim = 1:num_simulations
    % 生成新的RSSI测量值
    for i = 1:num_anchors
        PL = PL_d0 + 10 * n * log10(true_distances(i)/d0);
        shadowing = sigma_shadow * randn(1, num_measurements);
        rssi_measurements(i, :) = -PL + shadowing;
    end
    
    % 基本定位
    avg_rssi = mean(rssi_measurements, 2);
    basic_dists = d0 * 10.^((avg_rssi - PL_d0)./(10*n));
    
    A_basic = zeros(num_anchors-1, 2);
    b_basic = zeros(num_anchors-1, 1);
    
    for i = 1:num_anchors-1
        A_basic(i, 1) = 2*(anchor_positions(i+1, 1) - anchor_positions(1, 1));
        A_basic(i, 2) = 2*(anchor_positions(i+1, 2) - anchor_positions(1, 2));
        
        b_basic(i) = (anchor_positions(i+1, 1)^2 + anchor_positions(i+1, 2)^2) - ...
                     (anchor_positions(1, 1)^2 + anchor_positions(1, 2)^2) + ...
                     basic_dists(1)^2 - basic_dists(i+1)^2;
    end
    
    pos_basic = (A_basic' * A_basic) \ (A_basic' * b_basic);
    errors_basic(sim) = norm(pos_basic' - target_position);
    
    % RSSI修正 (卡尔曼滤波)
    kalman_rssi = zeros(num_anchors, num_measurements);
    for i = 1:num_anchors
        x_est = rssi_measurements(i, 1);
        P_est = 1;
        kalman_rssi(i, 1) = x_est;
        
        for j = 2:num_measurements
            x_pred = x_est;
            P_pred = P_est + Q;
            K = P_pred / (P_pred + R);
            x_est = x_pred + K * (rssi_measurements(i, j) - x_pred);
            P_est = (1 - K) * P_pred;
            kalman_rssi(i, j) = x_est;
        end
    end
    
    % 修正定位
    corrected_dists = d0 * 10.^((mean(kalman_rssi, 2) - PL_d0)./(10*n));
    
    A_corr = zeros(num_anchors-1, 2);
    b_corr = zeros(num_anchors-1, 1);
    
    for i = 1:num_anchors-1
        A_corr(i, 1) = 2*(anchor_positions(i+1, 1) - anchor_positions(1, 1));
        A_corr(i, 2) = 2*(anchor_positions(i+1, 2) - anchor_positions(1, 2));
        
        b_corr(i) = (anchor_positions(i+1, 1)^2 + anchor_positions(i+1, 2)^2) - ...
                    (anchor_positions(1, 1)^2 + anchor_positions(1, 2)^2) + ...
                    corrected_dists(1)^2 - corrected_dists(i+1)^2;
    end
    
    pos_corrected = (A_corr' * A_corr) \ (A_corr' * b_corr);
    errors_corrected(sim) = norm(pos_corrected' - target_position);
    
    % 加权定位
    weights = 1 ./ (corrected_dists.^2);
    weights = weights / sum(weights);
    
    A_weight = zeros(num_anchors-1, 2);
    b_weight = zeros(num_anchors-1, 1);
    W_mat = zeros(num_anchors-1, num_anchors-1);
    
    for i = 1:num_anchors-1
        A_weight(i, 1) = 2*(anchor_positions(i+1, 1) - anchor_positions(1, 1));
        A_weight(i, 2) = 2*(anchor_positions(i+1, 2) - anchor_positions(1, 2));
        
        b_weight(i) = (anchor_positions(i+1, 1)^2 + anchor_positions(i+1, 2)^2) - ...
                      (anchor_positions(1, 1)^2 + anchor_positions(1, 2)^2) + ...
                      corrected_dists(1)^2 - corrected_dists(i+1)^2;
        
        W_mat(i, i) = sqrt(weights(1) * weights(i+1));
    end
    
    pos_weighted = (A_weight' * W_mat * A_weight) \ (A_weight' * W_mat * b_weight);
    errors_weighted(sim) = norm(pos_weighted' - target_position);
    
    % 非线性优化
    fun_opt = @(x) sqrt(sum((anchor_positions - x).^2, 2)) - corrected_dists;
    pos_optimized = lsqnonlin(fun_opt, initial_guess, [], [], options);
    errors_optimized(sim) = norm(pos_optimized - target_position);
end

% 计算统计结果
fprintf('定位误差统计 (100次模拟):\n');
fprintf('基本定位 - 均值: %.3fm, 标准差: %.3fm\n', mean(errors_basic), std(errors_basic));
fprintf('修正定位 - 均值: %.3fm, 标准差: %.3fm\n', mean(errors_corrected), std(errors_corrected));
fprintf('加权定位 - 均值: %.3fm, 标准差: %.3fm\n', mean(errors_weighted), std(errors_weighted));
fprintf('优化定位 - 均值: %.3fm, 标准差: %.3fm\n', mean(errors_optimized), std(errors_optimized));

% 绘制误差分布
figure;
subplot(2,2,1);
histogram(errors_basic, 20);
title('基本定位误差分布');
xlabel('误差 (m)');
ylabel('频次');

subplot(2,2,2);
histogram(errors_corrected, 20);
title('修正定位误差分布');
xlabel('误差 (m)');
ylabel('频次');

subplot(2,2,3);
histogram(errors_weighted, 20);
title('加权定位误差分布');
xlabel('误差 (m)');
ylabel('频次');

subplot(2,2,4);
histogram(errors_optimized, 20);
title('优化定位误差分布');
xlabel('误差 (m)');
ylabel('频次');

%% 11. 环境参数敏感性分析
fprintf('\n进行环境参数敏感性分析...\n');

% 分析路径损耗指数的影响
n_values = 1.5:0.5:4;
n_errors = zeros(length(n_values), 4);

for i = 1:length(n_values)
    n_current = n_values(i);
    
    % 生成RSSI测量值
    for j = 1:num_anchors
        PL = PL_d0 + 10 * n_current * log10(true_distances(j)/d0);
        shadowing = sigma_shadow * randn(1, num_measurements);
        rssi_measurements(j, :) = -PL + shadowing;
    end
    
    % 基本定位
    avg_rssi = mean(rssi_measurements, 2);
    basic_dists = d0 * 10.^((avg_rssi - PL_d0)./(10*n_current));
    
    A_basic = zeros(num_anchors-1, 2);
    b_basic = zeros(num_anchors-1, 1);
    
    for k = 1:num_anchors-1
        A_basic(k, 1) = 2*(anchor_positions(k+1, 1) - anchor_positions(1, 1));
        A_basic(k, 2) = 2*(anchor_positions(k+1, 2) - anchor_positions(1, 2));
        
        b_basic(k) = (anchor_positions(k+1, 1)^2 + anchor_positions(k+1, 2)^2) - ...
                     (anchor_positions(1, 1)^2 + anchor_positions(1, 2)^2) + ...
                     basic_dists(1)^2 - basic_dists(k+1)^2;
    end
    
    pos_basic = (A_basic' * A_basic) \ (A_basic' * b_basic);
    n_errors(i, 1) = norm(pos_basic' - target_position);
    
    % 修正定位 (使用正确的n值)
    kalman_rssi = zeros(num_anchors, num_measurements);
    for j = 1:num_anchors
        x_est = rssi_measurements(j, 1);
        P_est = 1;
        kalman_rssi(j, 1) = x_est;
        
        for k = 2:num_measurements
            x_pred = x_est;
            P_pred = P_est + Q;
            K = P_pred / (P_pred + R);
            x_est = x_pred + K * (rssi_measurements(j, k) - x_pred);
            P_est = (1 - K) * P_pred;
            kalman_rssi(j, k) = x_est;
        end
    end
    
    corrected_dists = d0 * 10.^((mean(kalman_rssi, 2) - PL_d0)./(10*n_current));
    
    A_corr = zeros(num_anchors-1, 2);
    b_corr = zeros(num_anchors-1, 1);
    
    for k = 1:num_anchors-1
        A_corr(k, 1) = 2*(anchor_positions(k+1, 1) - anchor_positions(1, 1));
        A_corr(k, 2) = 2*(anchor_positions(k+1, 2) - anchor_positions(1, 2));
        
        b_corr(k) = (anchor_positions(k+1, 1)^2 + anchor_positions(k+1, 2)^2) - ...
                    (anchor_positions(1, 1)^2 + anchor_positions(1, 2)^2) + ...
                    corrected_dists(1)^2 - corrected_dists(k+1)^2;
    end
    
    pos_corrected = (A_corr' * A_corr) \ (A_corr' * b_corr);
    n_errors(i, 2) = norm(pos_corrected' - target_position);
end

% 绘制路径损耗指数敏感性分析
figure;
plot(n_values, n_errors(:, 1), 'b-o', 'LineWidth', 2);
hold on;
plot(n_values, n_errors(:, 2), 'r-s', 'LineWidth', 2);
xlabel('路径损耗指数 n');
ylabel('定位误差 (m)');
title('路径损耗指数敏感性分析');
legend('基本定位', '修正定位');
grid on;

%% 12. 结论与总结
fprintf('\n===== 基于RSSI修正的定位算法分析总结 =====\n');
fprintf('1. RSSI测量受环境因素影响较大,需要修正技术提高精度\n');
fprintf('2. 卡尔曼滤波能有效减少RSSI测量中的噪声影响\n');
fprintf('3. 加权最小二乘法考虑了距离估计的不确定性,提高了定位精度\n');
fprintf('4. 非线性优化方法能更好地处理距离估计误差\n');
fprintf('5. 路径损耗指数的准确性对定位精度有重要影响\n');
fprintf('6. 综合使用多种修正技术可以显著提高定位性能\n');

% 显示最终比较结果
fprintf('\n定位算法性能比较:\n');
fprintf('算法\t\t\t平均误差(m)\t标准差(m)\n');
fprintf('基本定位\t\t%.3f\t\t%.3f\n', mean(errors_basic), std(errors_basic));
fprintf('修正定位\t\t%.3f\t\t%.3f\n', mean(errors_corrected), std(errors_corrected));
fprintf('加权定位\t\t%.3f\t\t%.3f\n', mean(errors_weighted), std(errors_weighted));
fprintf('优化定位\t\t%.3f\t\t%.3f\n', mean(errors_optimized), std(errors_optimized));

程序说明

这个MATLAB程序实现了一个完整的基于RSSI修正的定位算法分析系统,包括以下主要内容:

1. 系统参数设置

  • 定义环境参数(路径损耗指数、阴影衰落标准差等)
  • 设置锚节点(基站)位置和目标节点真实位置
  • 配置RSSI测量参数

2. RSSI测量模型

  • 基于对数距离路径损耗模型生成RSSI测量值
  • 添加阴影衰落效应模拟真实环境
  • 可视化RSSI测量结果

3. 基本距离估计

  • 使用路径损耗模型从RSSI估计距离
  • 计算距离估计误差

4. 基本定位算法

  • 使用最小二乘法进行初步定位
  • 计算定位误差

5. RSSI修正技术

  • 实现滑动平均滤波减少RSSI波动
  • 实现卡尔曼滤波进一步优化RSSI测量
  • 比较不同修正技术的效果

6. 基于修正RSSI的定位

  • 使用修正后的RSSI进行距离估计
  • 应用最小二乘法进行定位

7. 加权最小二乘定位

  • 基于距离不确定性分配权重
  • 实现加权最小二乘定位算法

8. 非线性优化定位

  • 使用非线性最小二乘优化方法
  • 直接优化位置估计

9. 性能统计分析

  • 多次运行模拟获取统计结果
  • 比较不同算法的平均误差和标准差

10. 环境参数敏感性分析

  • 分析路径损耗指数对定位精度的影响
  • 评估算法对环境变化的鲁棒性

参考代码 基于RSSI修正的定位算法分析 www.youwenfan.com/contentcnh/64103.html

关键算法原理

RSSI路径损耗模型

RSSI与距离的关系由以下路径损耗模型描述:

PL(d) = PL(d0) + 10n log10(d/d0) + Xσ

其中:

  • PL(d) 是距离d处的路径损耗
  • PL(d0) 是参考距离d0处的路径损耗
  • n 是路径损耗指数
  • 是服从正态分布的阴影衰落

卡尔曼滤波

卡尔曼滤波用于减少RSSI测量中的噪声:

  1. 预测步骤:基于上一状态预测当前状态
  2. 更新步骤:使用新测量值更新预测

加权最小二乘

加权最小二乘法为不同距离估计分配不同权重:

权重 w_i = 1 / (d_i^2)

距离越远,估计不确定性越大,权重越小。

使用说明

  1. 修改环境参数以适应不同的应用场景
  2. 调整锚节点位置和目标节点位置
  3. 运行程序观察不同算法的性能比较
  4. 分析环境参数敏感性结果

扩展应用

这个RSSI定位框架可以扩展到以下应用场景:

  1. 室内定位:在商场、机场等室内环境中定位人员或设备
  2. 物联网设备跟踪:监控物联网设备的位置
  3. 无线传感器网络:在传感器网络中定位节点
  4. 智能家居:定位家居设备或人员

这个实现提供了一个完整的RSSI定位分析框架,您可以根据实际需求进行修改和扩展。