文章目录
- 一、前端拦截
- 二、后端拦截
- 1.基础版——HashMap
- 2.优化版——固定大小的数组
- 3.扩展版——双重检测锁(DCL)
- 4.完善版——LRUMap
- 5.最终版——封装
一、前端拦截
1.前端拦截是指通过 HTML 页面来拦截重复请求,比如在用户点击完“提交”按钮后,我们可以把按钮设置为不可用或者隐藏状态。
示例:
<html>
<script>
function subCli(){
// 按钮设置为不可用
document.getElementById("btn_sub").disabled="disabled";
document.getElementById("dv1").innerText = "按钮被点击了~";
}
</script>
<body style="margin-top: 100px;margin-left: 100px;">
<input id="btn_sub" type="button" value=" 提 交 " onclick="subCli()">
<div id="dv1" style="margin-top: 80px;"></div>
</body>
</html>
但前端拦截有一个致命的问题,如果是懂行的程序员或非法用户可以直接绕过前端页面,通过模拟请求来重复提交请求,比如充值了 100 元,重复提交了 10 次变成了 1000 元(瞬间发现了一个致富的好办法)。 所以除了前端拦截一部分正常的误操作之外,后端的拦截也是必不可少。
二、后端拦截
后端拦截的实现思路是在方法执行之前,先判断此业务是否已经执行过,如果执行过则不再执行,否则就正常执行。
我们将请求的业务 ID 存储在内存中,并且通过添加互斥锁来保证多线程下的程序执行安全,大体实现思路如下图所示
然而,将数据存储在内存中,最简单的方法就是使用 HashMap 存储,或者是使用 Guava Cache 也是同样的效果,但很显然 HashMap 可以更快的实现功能,所以我们先来实现一个 HashMap 的防重(防止重复)版本。
1.基础版——HashMap
// 缓存 ID 集合
private Map<String, Integer> reqCache = new HashMap<>();
@RequestMapping("/add")
public String addUser(String id) {
// 非空判断(忽略)...
synchronized (this.getClass()) {
// 重复请求判断
if (reqCache.containsKey(id)) {
// 重复请求
System.out.println("请勿重复提交!!!" + id);
return "执行失败";
}
// 存储请求 ID
reqCache.put(id, 1);
}
// 业务代码...
System.out.println("添加用户ID:" + id);
return "执行成功!";
}
存在的问题:此实现方式有一个致命的问题,因为 HashMap 是无限增长的,因此它会占用越来越多的内存,并且随着 HashMap 数量的增加查找的速度也会降低,所以我们需要实现一个可以自动“清除”过期数据的实现方案。
2.优化版——固定大小的数组
此版本解决了 HashMap 无限增长的问题,它使用数组加下标计数器(reqCacheCounter)的方式,实现了固定数组的循环存储。
当数组存储到最后一位时,将数组的存储下标设置 0,再从头开始存储数据,实现代码如下:
private static String[] reqCache = new String[100]; // 请求 ID 存储集合
private static Integer reqCacheCounter = 0; // 请求计数器(指示 ID 存储的位置)
@RequestMapping("/add")
public String addUser(String id) {
// 非空判断(忽略)...
synchronized (this.getClass()) {
// 重复请求判断
if (Arrays.asList(reqCache).contains(id)) {
// 重复请求
System.out.println("请勿重复提交!!!" + id);
return "执行失败";
}
// 记录请求 ID
if (reqCacheCounter >= reqCache.length) reqCacheCounter = 0; // 重置计数器
reqCache[reqCacheCounter] = id; // 将 ID 保存到缓存
reqCacheCounter++; // 下标往后移一位
}
// 业务代码...
System.out.println("添加用户ID:" + id);
return "执行成功!";
}
3.扩展版——双重检测锁(DCL)
上一种实现方法将判断和添加业务,都放入 synchronized 中进行加锁操作,这样显然性能不是很高,于是我们可以使用单例中著名的 DCL(Double Checked Locking,双重检测锁)来优化代码的执行效率,实现代码如下:
private static String[] reqCache = new String[100]; // 请求 ID 存储集合
private static Integer reqCacheCounter = 0; // 请求计数器(指示 ID 存储的位置)
@RequestMapping("/add")
public String addUser(String id) {
// 非空判断(忽略)...
// 重复请求判断
if (Arrays.asList(reqCache).contains(id)) {
// 重复请求
System.out.println("请勿重复提交!!!" + id);
return "执行失败";
}
synchronized (this.getClass()) {
// 双重检查锁(DCL,double checked locking)提高程序的执行效率
if (Arrays.asList(reqCache).contains(id)) {
// 重复请求
System.out.println("请勿重复提交!!!" + id);
return "执行失败";
}
// 记录请求 ID
if (reqCacheCounter >= reqCache.length) reqCacheCounter = 0; // 重置计数器
reqCache[reqCacheCounter] = id; // 将 ID 保存到缓存
reqCacheCounter++; // 下标往后移一位
}
// 业务代码...
System.out.println("添加用户ID:" + id);
return "执行成功!";
}
注意:DCL 适用于重复提交频繁比较高的业务场景,对于相反的业务场景下 DCL 并不适用。
4.完善版——LRUMap
上面的代码基本已经实现了重复数据的拦截,但显然不够简洁和优雅,比如下标计数器的声明和业务处理等,但值得庆幸的是 Apache 为我们提供了一个 commons-collections 的框架,里面有一个非常好用的数据结构 LRUMap 可以保存指定数量的固定的数据,并且它会按照 LRU 算法,帮你清除最不常用的数据。
先来添加 Apache commons collections 的引用:
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-collections4</artifactId>
<version>4.4</version>
</dependency>
实现代码如下:
// 最大容量 100 个,根据 LRU 算法淘汰数据的 Map 集合
private LRUMap<String, Integer> reqCache = new LRUMap<>(100);
@RequestMapping("/add")
public String addUser(String id) {
// 非空判断(忽略)...
synchronized (this.getClass()) {
// 重复请求判断
if (reqCache.containsKey(id)) {
// 重复请求
System.out.println("请勿重复提交!!!" + id);
return "执行失败";
}
// 存储请求 ID
reqCache.put(id, 1);
}
// 业务代码...
System.out.println("添加用户ID:" + id);
return "执行成功!";
}
5.最终版——封装
以上都是方法级别的实现方案,然而在实际的业务中,我们可能有很多的方法都需要防重,那么接下来我们就来封装一个公共的方法,以供所有类使用:
import org.apache.commons.collections4.map.LRUMap;
/**
* 幂等性判断
*/
public class IdempotentUtils {
// 根据 LRU(Least Recently Used,最近最少使用)算法淘汰数据的 Map 集合,最大容量 100 个
private static LRUMap<String, Integer> reqCache = new LRUMap<>(100);
/**
* 幂等性判断
* @return
*/
public static boolean judge(String id, Object lockClass) {
synchronized (lockClass) {
// 重复请求判断
if (reqCache.containsKey(id)) {
// 重复请求
System.out.println("请勿重复提交!!!" + id);
return false;
}
// 非重复请求,存储请求 ID
reqCache.put(id, 1);
}
return true;
}
}
调用代码如下:
@RequestMapping("/add")
public String addUser(String id) {
// 非空判断(忽略)...
// -------------- 幂等性调用(开始) --------------
if (!IdempotentUtils.judge(id, this.getClass())) {
return "执行失败";
}
// -------------- 幂等性调用(结束) --------------
// 业务代码...
System.out.println("添加用户ID:" + id);
return "执行成功!";
}