problem: await dont work

import * as tf from '@tensorflow/tfjs';
import drum from './data/pretrained-model-data/drum.jpg';
import drum2 from './data/pretrained-model-data/index.jpg';
import drum3 from './data/pretrained-model-data/index2.jpg';
import drum4 from './data/pretrained-model-data/index3.jpg';
// import labels from './imagenet_labels.json';

import blue1 from './data/colors/training/blue/blue-1.png';
import blue2 from './data/colors/training/blue/blue-2.png';
import blue3 from './data/colors/validation/blue/blue-3.png';
import red1 from './data/colors/training/red/red-1.png';
import red2 from './data/colors/training/red/red-2.png';
import red3 from './data/colors/validation/red/red-3.png';
const training = [
blue1,
blue2,
red1,
red2,
];

// labels should match the positions of their associated images
const labels = [
'blue',
'blue',
'red',
'red',
];



// function makePrediction(pretrainedModel, image, expectedLabel,model) {
// loadImage(image).then(loadedImage => {
// return loadAndProcessImage(loadedImage, pretrainedModel);
// }).then(loadedImage => {
// const prediction2 = pretrainedModel.predict(loadedImage);
// console.log('Expected Label', expectedLabel );
// console.log('Predicted Label', model.predict(prediction2).as1D().argMax().data());
// // loadedImage.dispose();
// });
// }
// function makePrediction(pretrainedModel, image, expectedLabel) {
// loadImage(image).then(loadedImage => {
// return loadAndProcessImage(loadedImage, pretrainedModel);
// }).then(loadedImage => {
// console.log('Expected Label', expectedLabel);
// console.log('Predicted Label', predict(model, loadedImage));
// loadedImage.dispose();
// });
// }
buildPretrainedModel().then(pretrainedModel => {
loadImages(training, pretrainedModel).then(xs => {
console.log(xs);
const prediction = pretrainedModel.predict(xs);
console.log(prediction);
const ys = addLabels(labels);

const model = getModel(2);

model.fit(prediction, ys, {
epochs: 20,
shuffle: true,
}).then(history => {

// makePrediction(pretrainedModel, blue3, "0");
// makePrediction(pretrainedModel, red3, "1");
// make predictions
loadImage(blue3).then(loadedImage => {
return loadAndProcessImage(loadedImage, pretrainedModel);
}).then(loadedImage => {
const prediction2 = pretrainedModel.predict(loadedImage);
console.log('Expected Label', "0");
console.log('Predicted Label', model.predict(prediction2).as1D().argMax().data() );

// async function print(){

// const prediction3 = model.predict(prediction2);
// const predictedClass =prediction3.as1D().argMax();
// const classID = (await predictedClass.data())[0];

// }
// loadedImage.dispose();
});

// loadImage(red3).then(async (loadedImage) => {
// return loadAndProcessImage(loadedImage, pretrainedModel);
// }).then(loadedImage => {
// const prediction2 = pretrainedModel.predict(loadedImage);
// console.log('Expected Label', "1");
// console.log('Predicted Label', (await (model.predict(prediction2).as1D().argMax().data()) )[0] );
// // loadedImage.dispose();
// });
// makePrediction(pretrainedModel, blue3, "0",model);
// makePrediction(pretrainedModel, red3, "1",model);
});
});
});
// buildPretrainedModel().then(pretrainedModel => {
// loadImages(training, pretrainedModel).then(xs => {
// const xxs = pretrainedModel.predict(xs)
// const ys = addLabels(labels);

// const model = getModel(2);

// model.fit(xxs, ys, {
// epochs: 20,
// shuffle: true,
// }).then(history => {
// // make predictions
// loadImage(red3).then(loadedImage => {
// return loadAndProcessImage(loadedImage, pretrainedModel);
// }).then(loadedImage => {


// console.log('Expected Label', '1');
// console.log('Predicted Label', model.predict(loadedImage));
// // loadedImage.dispose();
// });

// // makePrediction(pretrainedModel, blue3, "0");
// // makePrediction(pretrainedModel, red3, "1");
// });
// });
// });
function getModel(numberOfClasses) {
const model = tf.sequential({
layers: [
tf.layers.flatten({inputShape: [7, 7, 256]}),
tf.layers.dense({
units: 100,
activation: 'relu',
kernelInitializer: 'varianceScaling',
useBias: true
}),
tf.layers.dense({
units: numberOfClasses,
kernelInitializer: 'varianceScaling',
useBias: false,
activation: 'softmax'
})
],
});

model.compile({
optimizer: tf.train.adam(0.0001),
loss: 'categoricalCrossentropy',
metrics: ['accuracy'],
});

return model;
}
// buildPretrainedModel().then(pretrainedModel => {
// loadImages(training, pretrainedModel).then(xs => {
// console.log("===========================");
// xs.print();
// })


// pretrainedModel.summary();
// loadImage(drum4).then(img => {
// const processedImage = loadAndProcessImage(img);
// const prediction = pretrainedModel.predict(processedImage);

// // Because of the way Tensorflow.js works, you must call print on a Tensor instead of console.log.
// prediction.print();
// const labelPrediction = prediction.as1D().argMax().dataSync()[0];
// // console.log(`
// // Numeric prediction is ${labelPrediction}
// // The predicted label is ${labels[labelPrediction]}
// // The actual label is drum, membranophone, tympan
// // `);
// });
// });
function oneHot(labelIndex, classLength) {
return tf.tidy(() => tf.oneHot(tf.tensor1d([labelIndex]).toInt(), classLength));
};
function getLabelsAsObject(labels) {
let labelObject = {};
for (let i = 0; i < labels.length; i++) {
const label = labels[i];
if (labelObject[label] === undefined) {
// only assign it if we haven't seen it before
labelObject[label] = Object.keys(labelObject).length;
}
}
return labelObject;
}

function addLabels(labels) {
return tf.tidy(() => {
const classes = getLabelsAsObject(labels);
const classLength = Object.keys(classes).length;

let ys;
for (let i = 0; i < labels.length; i++) {
const label = labels[i];
const labelIndex = classes[label];
const y = oneHot(labelIndex, classLength);
if (i === 0) {
ys = y;
} else {
ys = ys.concat(y, 0);
}
}
return ys;
});
};
function loadImages(images, pretrainedModel) {
let promise = Promise.resolve();
for (let i = 0; i < images.length; i++) {
const image = images[i];
promise = promise.then(data => {
return loadImage(image).then(loadedImage => {
// Note the use of `tf.tidy` and `.dispose()`. These are two memory management
// functions that Tensorflow.js exposes.
// https://js.tensorflow.org/tutorials/core-concepts.html
//
// Handling memory management is crucial for building a performant machine learning
// model in a browser.
return tf.tidy(() => {
const processedImage = loadAndProcessImage(loadedImage, pretrainedModel);
if (data) {
const newData = data.concat(processedImage);
data.dispose();
return newData;
}

return tf.keep(processedImage);
});
});
});
}

return promise;
}
function buildPretrainedModel() {
return loadMobilenet().then(mobilenet => {
const layer = mobilenet.getLayer('conv_pw_13_relu');
return tf.model({
inputs: mobilenet.inputs,
outputs: layer.output,
});
});
}
function loadMobilenet() {
return tf.loadModel('https://storage.googleapis.com/tfjs-models/tfjs/mobilenet_v1_0.25_224/model.json');
}
function loadImage(src) {
return new Promise((resolve, reject) => {
const img = new Image();
img.src = src;
img.onload = () => resolve(tf.fromPixels(img));
img.onerror = (err) => reject(err);
});
}
function cropImage(img) {
const width = img.shape[0];
const height = img.shape[1];

// use the shorter side as the size to which we will crop
const shorterSide = Math.min(img.shape[0], img.shape[1]);

// calculate beginning and ending crop points
const startingHeight = (height - shorterSide) / 2;
const startingWidth = (width - shorterSide) / 2;
const endingHeight = startingHeight + shorterSide;
const endingWidth = startingWidth + shorterSide;

// return image data cropped to those points
return img.slice([startingWidth, startingHeight, 0], [endingWidth, endingHeight, 3]);
}
function batchImage(image) {
// Expand our tensor to have an additional dimension, whose size is 1
const batchedImage = image.expandDims(0);

// Turn pixel data into a float between -1 and 1.
return batchedImage.toFloat().div(tf.scalar(127)).sub(tf.scalar(1));
}
function resizeImage(image) {
return tf.image.resizeBilinear(image, [224, 224]);
}
function loadAndProcessImage(image) {
const croppedImage = cropImage(image);
const resizedImage = resizeImage(croppedImage);
const batchedImage = batchImage(resizedImage);
return batchedImage;
}