1. Namenode的工作机制

思考:NameNode中的元数据是存储在哪里的?

首先,我们做个假设,如果存储在NameNode节点的磁盘中,因为经常需要进行随机访问,还有响应客户请求,必然是效率过低。因此,元数据需要存放在内存中。但如果只存在内存中,一旦断电,元数据丢失,整个集群就无法工作了。因此产生在磁盘中备份元数据的FsImage。

这样又会带来新的问题,当在内存中的元数据更新时,如果同时更新FsImage,就会导致效率过低,但如果不更新,就会发生一致性问题,一旦NameNode节点断电,就会产生数据丢失。因此,引入Edits文件(只进行追加操作,效率很高)。每当元数据有更新或者添加元数据时,修改内存中的元数据并追加到Edits中。这样,一旦NameNode节点断电,可以通过FsImage和Edits的合并,合成元数据。

但是,如果长时间添加数据到Edits中,会导致该文件数据过大,效率降低,而且一旦断电,恢复元数据需要的时间过长。因此,需要定期进行FsImage和Edits的合并,如果这个操作由NameNode节点完成,又会效率过低。因此,引入一个新的节点SecondaryNamenode,专门用于FsImage和Edits的合并。

NN和2NN工作机制,如图所示。

NameNode和Second Name Node的工作流程_元数据

SNN 永远比NN差一些操作步骤,如上图中的edits.inprogress中的操作,所以SNN不能替代NN进行操作

第一阶段:NameNode启动

  1. 第一次启动NameNode格式化后,创建Fsimage和Edits文件。如果不是第一次启动,直接加载编辑日志和镜像文件到内存。
  2. 客户端对元数据进行增删改的请求。
  3. NameNode记录操作日志,更新滚动日志。
  4. NameNode在内存中对数据进行增删改。

第二阶段:Secondary NameNode工作

  1. Secondary NameNode询问NameNode是否需要CheckPoint。直接带回NameNode是否检查结果。
  2. Secondary NameNode请求执行CheckPoint。
  3. NameNode滚动正在写的Edits日志。
  4. 将滚动前的编辑日志和镜像文件拷贝到Secondary NameNode。
  5. Secondary NameNode加载编辑日志和镜像文件到内存,并合并。
  6. 生成新的镜像文件fsimage.chkpoint。
  7. 拷贝fsimage.chkpoint到NameNode。
  8. NameNode将fsimage.chkpoint重新命名成fsimage。

2. SNN工作机制详解

Fsimage:NameNode内存中元数据序列化后形成的文件。

Edits:记录客户端更新元数据信息的每一步操作(可通过Edits运算出元数据)。

NameNode启动时,先滚动Edits并生成一个空的edits.inprogress,然后加载Edits和Fsimage到内存中,此时NameNode内存就持有最新的元数据信息。Client开始对NameNode发送元数据的增删改的请求,这些请求的操作首先会被记录到edits.inprogress中(查询元数据的操作不会被记录在Edits中,因为查询操作不会更改元数据信息),如果此时NameNode挂掉,重启后会从Edits中读取元数据的信息。然后,NameNode会在内存中执行元数据的增删改的操作。

由于Edits中记录的操作会越来越多,Edits文件会越来越大,导致NameNode在启动加载Edits时会很慢,所以需要对Edits和Fsimage进行合并(所谓合并,就是将Edits和Fsimage加载到内存中,照着Edits中的操作一步步执行,最终形成新的Fsimage)。SecondaryNameNode的作用就是帮助NameNode进行Edits和Fsimage的合并工作。

SNN首先会询问NameNode是否需要CheckPoint(触发CheckPoint需要满足两个条件中的任意一个,定时时间到和Edits中数据写满了)。直接带回NameNode是否检查结果。SecondaryNameNode执行CheckPoint操作,首先会让NameNode滚动Edits并生成一个空的edits.inprogress,滚动Edits的目的是给Edits打个标记,以后所有新的操作都写入edits.inprogress,其他未合并的Edits和Fsimage会拷贝到SecondaryNameNode的本地,然后将拷贝的Edits和Fsimage加载到内存中进行合并,生成fsimage.chkpoint,然后将fsimage.chkpoint拷贝给NameNode,重命名为Fsimage后替换掉原来的Fsimage。NameNode在启动时就只需要加载之前未合并的Edits和Fsimage即可,因为合并过的Edits中的元数据信息已经被记录在Fsimage中。

NameNode和Second Name Node的工作流程_元数据_02

具体工作流程

  1. secondarynamenode请求namenode生成新的edits log文件并向其中写日志。NameNode会在所有的存储目录中更新seen_txid文件
  2. SecondaryNameNode通过HTTP GET的方式从NameNode下载fsimage和edits文件到本地。
  3. SecondaryNameNode将fsimage加载到自己的内存,并根据edits log更新内存中的fsimage信息,然后将更新完毕之后的fsimage写到磁盘上。
  4. SecondaryNameNode通过HTTP PUT将新的fsimage文件发送到NameNode,NameNode将该文件保存为.ckpt的临时文件备用。
  5. NameNode重命名该临时文件并准备使用。此时NameNode拥有一个新的fsimage文件和一个新的很小的edits log文件(可能不是空的,因为在SecondaryNameNode合并期间可能对元数据进行了读写操作),管理员也可以将NameNode置于safemode,通过hdfs dfsadmin -saveNamespace命令来进行edits log和fsimage的合井。

注意

  1. SecondaryNameNode要和NameNode拥有相同的内存。

  2. 对大的集群,secondaryNameNode运行于一台专用的物理主机。

  3. namenode启动的时候,首先将映像文件(fsimage)载入内存,并执行编辑日志(edits)中的各项操作。

  4. 一旦在内存中成功建立文件系统元数据的映射,则创建一个新的fsimage文件(这个操作不需要SecondaryNameNode)和一个空的编辑日志。

  5. 程序关机时,系统会将fsimage与edits log做一次合并为新的fsimage文件,当系统重新启动时,会加载新的fsimage文件。

  6. 安全模式:

    • fsimage文件不会记录每个block所在的DataNode信息。这些信息在每次系统开机启动的时候从DataNode(DataNode向NameNode发送心跳)重建。之后DataNode会周期性地通过心跳包向NameNode报告block信息。

    • DataNode向NameNode注册的时候NameNode会请求DataNode发送block列表信息。

  7. edits log文件很小,每次做合并操作时不会耗时很久。

    为什么edits log文件很小?

    HDFS架构中,除了NameNode,还有一个SecondaryNameNode.

    SecondaryNameNode就是当edits log文件到达一定阈值时或到达规定的时间时会获取NameNode中的fsimage和editslog文件并将它们做一次合并,然后将新的fsimage文件发送给NameNode,这样edits log文件就可以更新为空文件,继续存储新的操作记录。