2.1 需求1:统计手机号耗费的总上行流量、下行流量、总流量(序列化)
1)需求:
统计每一个手机号耗费的总上行流量、下行流量、总流量
2)数据准备
1363157985066 13726230503 00-FD-07-A4-72-B8:CMCC 120.196.100.82 i02.c.aliimg.com 24 27 2481 24681 200
1363157995052 13826544101 5C-0E-8B-C7-F1-E0:CMCC 120.197.40.4 4 0 264 0 200
1363157991076 13926435656 20-10-7A-28-CC-0A:CMCC 120.196.100.99 2 4 132 1512 200
1363154400022 13926251106 5C-0E-8B-8B-B1-50:CMCC 120.197.40.4 4 0 240 0 200
1363157993044 18211575961 94-71-AC-CD-E6-18:CMCC-EASY 120.196.100.99 iface.qiyi.com 视频网站 15 12 1527 2106 200
1363157995074 84138413 5C-0E-8B-8C-E8-20:7DaysInn 120.197.40.4 122.72.52.12 20 16 4116 1432 200
1363157993055 13560439658 C4-17-FE-BA-DE-D9:CMCC 120.196.100.99 18 15 1116 954 200
1363157995033 15920133257 5C-0E-8B-C7-BA-20:CMCC 120.197.40.4 sug.so.360.cn 信息安全 20 20 3156 2936 200
1363157983019 13719199419 68-A1-B7-03-07-B1:CMCC-EASY 120.196.100.82 4 0 240 0 200
1363157984041 13660577991 5C-0E-8B-92-5C-20:CMCC-EASY 120.197.40.4 s19.cnzz.com 站点统计 24 9 6960 690 200
1363157973098 15013685858 5C-0E-8B-C7-F7-90:CMCC 120.197.40.4 rank.ie.sogou.com 搜索引擎 28 27 3659 3538 200
1363157986029 15989002119 E8-99-C4-4E-93-E0:CMCC-EASY 120.196.100.99 www.umeng.com 站点统计 3 3 1938 180 200
1363157992093 13560439658 C4-17-FE-BA-DE-D9:CMCC 120.196.100.99 15 9 918 4938 200
1363157986041 13480253104 5C-0E-8B-C7-FC-80:CMCC-EASY 120.197.40.4 3 3 180 180 200
1363157984040 13602846565 5C-0E-8B-8B-B6-00:CMCC 120.197.40.4 2052.flash2-http.qq.com 综合门户 15 12 1938 2910 200
1363157995093 13922314466 00-FD-07-A2-EC-BA:CMCC 120.196.100.82 img.qfc.cn 12 12 3008 3720 200
1363157982040 13502468823 5C-0A-5B-6A-0B-D4:CMCC-EASY 120.196.100.99 y0.ifengimg.com 综合门户 57 102 7335 110349 200
1363157986072 18320173382 84-25-DB-4F-10-1A:CMCC-EASY 120.196.100.99 input.shouji.sogou.com 搜索引擎 21 18 9531 2412 200
1363157990043 13925057413 00-1F-64-E1-E6-9A:CMCC 120.196.100.55 t3.baidu.com 搜索引擎 69 63 11058 48243 200
1363157988072 13760778710 00-FD-07-A4-7B-08:CMCC 120.196.100.82 2 2 120 120 200
1363157985066 13560436666 00-FD-07-A4-72-B8:CMCC 120.196.100.82 i02.c.aliimg.com 24 27 2481 24681 200
1363157993055 13560436666 C4-17-FE-BA-DE-D9:CMCC 120.196.100.99 18 15 1116 954 200
3)分析
基本思路:
Map阶段:
(1)读取一行数据,切分字段
(2)抽取手机号、上行流量、下行流量
(3)以手机号为key,bean对象为value输出,即context.write(手机号,bean);
Reduce阶段:
(1)累加上行流量和下行流量得到总流量。
(2)实现自定义的bean来封装流量信息,并将bean作为map输出的key来传输
(3)MR程序在处理数据的过程中会对数据排序(map输出的kv对传输到reduce之前,会排序),排序的依据是map输出的key
所以,我们如果要实现自己需要的排序规则,则可以考虑将排序因素放到key中,让key实现接口:WritableComparable。
然后重写key的compareTo方法。
4)编写mapreduce程序
(1)编写流量统计的bean对象
package com.atguigu.mapreduce.flowsum; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import org.apache.hadoop.io.Writable; // 1 实现writable接口 public class FlowBean implements Writable{ private long upFlow ; private long downFlow; private long sumFlow; //2 反序列化时,需要反射调用空参构造函数,所以必须有 public FlowBean() { super(); } public FlowBean(long upFlow, long downFlow) { super(); this.upFlow = upFlow; this.downFlow = downFlow; this.sumFlow = upFlow + downFlow; } //3 写序列化方法 @Override public void write(DataOutput out) throws IOException { out.writeLong(upFlow); out.writeLong(downFlow); out.writeLong(sumFlow); } //4 反序列化方法 //5 反序列化方法读顺序必须和写序列化方法的写顺序必须一致 @Override public void readFields(DataInput in) throws IOException { this.upFlow = in.readLong(); this.downFlow = in.readLong(); this.sumFlow = in.readLong(); } // 6 编写toString方法,方便后续打印到文本 @Override public String toString() { return upFlow + "\t" + downFlow + "\t" + sumFlow; } public long getUpFlow() { return upFlow; } public void setUpFlow(long upFlow) { this.upFlow = upFlow; } public long getDownFlow() { return downFlow; } public void setDownFlow(long downFlow) { this.downFlow = downFlow; } public long getSumFlow() { return sumFlow; } public void setSumFlow(long sumFlow) { this.sumFlow = sumFlow; } } |
(2)编写mapper
package com.atguigu.mapreduce.flowsum; import java.io.IOException; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; public class FlowCountMapper extends Mapper<LongWritable, Text, Text, FlowBean>{ FlowBean v = new FlowBean(); Text k = new Text(); @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { // 1 获取一行 String line = value.toString(); // 2 切割字段 String[] fields = line.split("\t"); // 3 封装对象 // 取出手机号码 String phoneNum = fields[1]; // 取出上行流量和下行流量 long upFlow = Long.parseLong(fields[fields.length - 3]); long downFlow = Long.parseLong(fields[fields.length - 2]); v.set(downFlow, upFlow); // 4 写出 context.write(new Text(phoneNum), new FlowBean(upFlow, downFlow)); } } |
(3)编写reducer
package com.atguigu.mapreduce.flowsum; import java.io.IOException; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; public class FlowCountReducer extends Reducer<Text, FlowBean, Text, FlowBean> { @Override protected void reduce(Text key, Iterable<FlowBean> values, Context context) throws IOException, InterruptedException { long sum_upFlow = 0; long sum_downFlow = 0; // 1 遍历所用bean,将其中的上行流量,下行流量分别累加 for (FlowBean flowBean : values) { sum_upFlow += flowBean.getSumFlow(); sum_downFlow += flowBean.getDownFlow(); } // 2 封装对象 FlowBean resultBean = new FlowBean(sum_upFlow, sum_downFlow); // 3 写出 context.write(key, resultBean); } } |
(4)编写驱动
package com.atguigu.mapreduce.flowsum; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class FlowsumDriver { public static void main(String[] args) throws IllegalArgumentException, IOException, ClassNotFoundException, InterruptedException { // 1 获取配置信息,或者job对象实例 Configuration configuration = new Configuration(); Job job = Job.getInstance(configuration); // 6 指定本程序的jar包所在的本地路径 job.setJarByClass(FlowsumDriver.class); // 2 指定本业务job要使用的mapper/Reducer业务类 job.setMapperClass(FlowCountMapper.class); job.setReducerClass(FlowCountReducer.class); // 3 指定mapper输出数据的kv类型 job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(FlowBean.class); // 4 指定最终输出的数据的kv类型 job.setOutputKeyClass(Text.class); job.setOutputValueClass(FlowBean.class); // 5 指定job的输入原始文件所在目录 FileInputFormat.setInputPaths(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); // 7 将job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行 boolean result = job.waitForCompletion(true); System.exit(result ? 0 : 1); } } |
2.2 需求2:将统计结果按照手机归属地不同省份输出到不同文件中(Partitioner)
0)需求:将统计结果按照手机归属地不同省份输出到不同文件中(分区)
1)数据准备
数据同上
2)分析
(1)Mapreduce中会将map输出的kv对,按照相同key分组,然后分发给不同的reducetask。默认的分发规则为:根据key的hashcode%reducetask数来分发
(2)如果要按照我们自己的需求进行分组,则需要改写数据分发(分组)组件Partitioner
自定义一个CustomPartitioner继承抽象类:Partitioner
(3)在job驱动中,设置自定义partitioner: job.setPartitionerClass(CustomPartitioner.class)
3)在需求1的基础上,增加一个分区类
package com.atguigu.mapreduce.flowsum; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Partitioner; public class ProvincePartitioner extends Partitioner<Text, FlowBean> { @Override public int getPartition(Text key, FlowBean value, int numPartitions) { // 1 获取电话号码的前三位 String preNum = key.toString().substring(0, 3); int partition = 4; // 2 判断是哪个省 if ("136".equals(preNum)) { partition = 0; }else if ("137".equals(preNum)) { partition = 1; }else if ("138".equals(preNum)) { partition = 2; }else if ("139".equals(preNum)) { partition = 3; } return partition; } } |
2)在驱动函数中增加自定义数据分区设置和reduce task设置
package com.atguigu.mapreduce.flowsum; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class FlowsumDriver { public static void main(String[] args) throws IllegalArgumentException, IOException, ClassNotFoundException, InterruptedException { // 1 获取配置信息,或者job对象实例 Configuration configuration = new Configuration(); Job job = Job.getInstance(configuration); // 6 指定本程序的jar包所在的本地路径 job.setJarByClass(FlowsumDriver.class); // 2 指定本业务job要使用的mapper/Reducer业务类 job.setMapperClass(FlowCountMapper.class); job.setReducerClass(FlowCountReducer.class); // 3 指定mapper输出数据的kv类型 job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(FlowBean.class); // 4 指定最终输出的数据的kv类型 job.setOutputKeyClass(Text.class); job.setOutputValueClass(FlowBean.class); // 8 指定自定义数据分区 job.setPartitionerClass(ProvincePartitioner.class); // 9 同时指定相应数量的reduce task job.setNumReduceTasks(5); // 5 指定job的输入原始文件所在目录 FileInputFormat.setInputPaths(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); // 7 将job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行 boolean result = job.waitForCompletion(true); System.exit(result ? 0 : 1); } } |
2.3 需求3:将统计结果按照总流量倒序排序(全排序)
0)需求
根据需求1产生的结果再次对总流量进行排序。
1)数据准备
数据同上
2)分析
(1)把程序分两步走,第一步正常统计总流量,第二步再把结果进行排序
(2)context.write(总流量,手机号)
(3)FlowBean实现WritableComparable接口重写compareTo方法
@Override publicint compareTo(FlowBean o) { // 倒序排列,从大到小 returnthis.sumFlow > o.getSumFlow() ? -1 : 1; } |
3)代码实现
(1)FlowBean对象在在需求1基础上增加了比较功能
package com.atguigu.mapreduce.sort; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import org.apache.hadoop.io.WritableComparable; publicclass FlowBean implements WritableComparable<FlowBean> { privatelong upFlow; privatelong downFlow; privatelong sumFlow; // 反序列化时,需要反射调用空参构造函数,所以必须有 public FlowBean() { super(); } public FlowBean(long upFlow, long downFlow) { super(); this.upFlow = upFlow; this.downFlow = downFlow; this.sumFlow = upFlow + downFlow; } publicvoid set(long upFlow, long downFlow) { this.upFlow = upFlow; this.downFlow = downFlow; this.sumFlow = upFlow + downFlow; } publiclong getSumFlow() { return sumFlow; } publicvoid setSumFlow(long sumFlow) { this.sumFlow = sumFlow; } publiclong getUpFlow() { return upFlow; } publicvoid setUpFlow(long upFlow) { this.upFlow = upFlow; } publiclong getDownFlow() { return downFlow; } publicvoid setDownFlow(long downFlow) { this.downFlow = downFlow; } /** * 序列化方法 * @param out * @throws IOException */ @Override publicvoid write(DataOutput out) throws IOException { out.writeLong(upFlow); out.writeLong(downFlow); out.writeLong(sumFlow); } /** * 反序列化方法 注意反序列化的顺序和序列化的顺序完全一致 * @param in * @throws IOException */ @Override publicvoid readFields(DataInput in) throws IOException { upFlow = in.readLong(); downFlow = in.readLong(); sumFlow = in.readLong(); } @Override public String toString() { return upFlow + "\t" + downFlow + "\t" + sumFlow; } @Override publicint compareTo(FlowBean o) { // 倒序排列,从大到小 returnthis.sumFlow > o.getSumFlow() ? -1 : 1; } } |
(2)编写mapper
package com.atguigu.mapreduce.sort; import java.io.IOException; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; public class FlowCountSortMapper extends Mapper<LongWritable, Text, FlowBean, Text>{ FlowBean bean = new FlowBean(); Text v = new Text(); @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { // 1 获取一行 String line = value.toString(); // 2 截取 String[] fields = line.split("\t"); // 3 封装对象 String phoneNbr = fields[0]; long upFlow = Long.parseLong(fields[1]); long downFlow = Long.parseLong(fields[2]); bean.set(upFlow, downFlow); v.set(phoneNbr); // 4 输出 context.write(bean, v); } } |
(3)编写reducer
package com.atguigu.mapreduce.sort; import java.io.IOException; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; public class FlowCountSortReducer extends Reducer<FlowBean, Text, Text, FlowBean>{ @Override protected void reduce(FlowBean key, Iterable<Text> values, Context context) throws IOException, InterruptedException { // 循环输出,避免总流量相同情况 for (Text text : values) { context.write(text, key); } } } |
(4)编写driver
package com.atguigu.mapreduce.sort; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class FlowCountSortDriver { public static void main(String[] args) throws ClassNotFoundException, IOException, InterruptedException { // 1 获取配置信息,或者job对象实例 Configuration configuration = new Configuration(); Job job = Job.getInstance(configuration); // 6 指定本程序的jar包所在的本地路径 job.setJarByClass(FlowCountSortDriver.class); // 2 指定本业务job要使用的mapper/Reducer业务类 job.setMapperClass(FlowCountSortMapper.class); job.setReducerClass(FlowCountSortReducer.class); // 3 指定mapper输出数据的kv类型 job.setMapOutputKeyClass(FlowBean.class); job.setMapOutputValueClass(Text.class); // 4 指定最终输出的数据的kv类型 job.setOutputKeyClass(Text.class); job.setOutputValueClass(FlowBean.class); // 5 指定job的输入原始文件所在目录 FileInputFormat.setInputPaths(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); // 7 将job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行 boolean result = job.waitForCompletion(true); System.exit(result ? 0 : 1); } } |
2.4 需求4:不同省份输出文件内部排序(部分排序)
1)需求
要求每个省份手机号输出的文件中按照总流量内部排序。
2)分析:
基于需求3,增加自定义分区类即可。
3)案例实操
(1)增加自定义分区类
package com.atguigu.mapreduce.sort; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Partitioner; public class ProvincePartitioner extends Partitioner<FlowBean, Text> { @Override public int getPartition(FlowBean key, Text value, int numPartitions) { // 1 获取手机号码前三位 String preNum = value.toString().substring(0, 3); int partition = 4; // 2 根据手机号归属地设置分区 if ("136".equals(preNum)) { partition = 0; }else if ("137".equals(preNum)) { partition = 1; }else if ("138".equals(preNum)) { partition = 2; }else if ("139".equals(preNum)) { partition = 3; } return partition; } } |
(2)在驱动类中添加分区类
// 加载自定义分区类 job.setPartitionerClass(FlowSortPartitioner.class); // 设置Reducetask个数 job.setNumReduceTasks(5); |