2.1 需求1:统计手机号耗费的总上行流量、下行流量、总流量(序列化)

1)需求:

统计每一个手机号耗费的总上行流量、下行流量、总流量

2)数据准备

1363157985066     13726230503    00-FD-07-A4-72-B8:CMCC    120.196.100.82    i02.c.aliimg.com        24    27    2481    24681    200
1363157995052     13826544101    5C-0E-8B-C7-F1-E0:CMCC    120.197.40.4            4    0    264    0    200
1363157991076     13926435656    20-10-7A-28-CC-0A:CMCC    120.196.100.99            2    4    132    1512    200
1363154400022     13926251106    5C-0E-8B-8B-B1-50:CMCC    120.197.40.4            4    0    240    0    200
1363157993044     18211575961    94-71-AC-CD-E6-18:CMCC-EASY    120.196.100.99    iface.qiyi.com    视频网站    15    12    1527    2106    200
1363157995074     84138413    5C-0E-8B-8C-E8-20:7DaysInn    120.197.40.4    122.72.52.12        20    16    4116    1432    200
1363157993055     13560439658    C4-17-FE-BA-DE-D9:CMCC    120.196.100.99            18    15    1116    954    200
1363157995033     15920133257    5C-0E-8B-C7-BA-20:CMCC    120.197.40.4    sug.so.360.cn    信息安全    20    20    3156    2936    200
1363157983019     13719199419    68-A1-B7-03-07-B1:CMCC-EASY    120.196.100.82            4    0    240    0    200
1363157984041     13660577991    5C-0E-8B-92-5C-20:CMCC-EASY    120.197.40.4    s19.cnzz.com    站点统计    24    9    6960    690    200
1363157973098     15013685858    5C-0E-8B-C7-F7-90:CMCC    120.197.40.4    rank.ie.sogou.com    搜索引擎    28    27    3659    3538    200
1363157986029     15989002119    E8-99-C4-4E-93-E0:CMCC-EASY    120.196.100.99    www.umeng.com    站点统计    3    3    1938    180    200
1363157992093     13560439658    C4-17-FE-BA-DE-D9:CMCC    120.196.100.99            15    9    918    4938    200
1363157986041     13480253104    5C-0E-8B-C7-FC-80:CMCC-EASY    120.197.40.4            3    3    180    180    200
1363157984040     13602846565    5C-0E-8B-8B-B6-00:CMCC    120.197.40.4    2052.flash2-http.qq.com    综合门户    15    12    1938    2910    200
1363157995093     13922314466    00-FD-07-A2-EC-BA:CMCC    120.196.100.82    img.qfc.cn        12    12    3008    3720    200
1363157982040     13502468823    5C-0A-5B-6A-0B-D4:CMCC-EASY    120.196.100.99    y0.ifengimg.com    综合门户    57    102    7335    110349    200
1363157986072     18320173382    84-25-DB-4F-10-1A:CMCC-EASY    120.196.100.99    input.shouji.sogou.com    搜索引擎    21    18    9531    2412    200
1363157990043     13925057413    00-1F-64-E1-E6-9A:CMCC    120.196.100.55    t3.baidu.com    搜索引擎    69    63    11058    48243    200
1363157988072     13760778710    00-FD-07-A4-7B-08:CMCC    120.196.100.82            2    2    120    120    200
1363157985066     13560436666    00-FD-07-A4-72-B8:CMCC    120.196.100.82    i02.c.aliimg.com        24    27    2481    24681    200
1363157993055     13560436666    C4-17-FE-BA-DE-D9:CMCC    120.196.100.99            18    15    1116    954    200

MapReduce实战之流量汇总案例_mapreduce

3)分析

基本思路:

Map阶段:

(1)读取一行数据,切分字段

(2)抽取手机号、上行流量、下行流量

(3)以手机号为key,bean对象为value输出,即context.write(手机号,bean);

Reduce阶段:

(1)累加上行流量和下行流量得到总流量。

(2)实现自定义的bean来封装流量信息,并将bean作为map输出的key来传输

(3)MR程序在处理数据的过程中会对数据排序(map输出的kv对传输到reduce之前,会排序),排序的依据是map输出的key

所以,我们如果要实现自己需要的排序规则,则可以考虑将排序因素放到key中,让key实现接口:WritableComparable。

然后重写key的compareTo方法。

4)编写mapreduce程序

(1)编写流量统计的bean对象

package com.atguigu.mapreduce.flowsum;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.Writable;

// 1 实现writable接口
public class FlowBean implements Writable{

private long upFlow ;
private long downFlow;
private long sumFlow;

//2 反序列化时,需要反射调用空参构造函数,所以必须有
public FlowBean() {
super();
}

public FlowBean(long upFlow, long downFlow) {
super();
this.upFlow = upFlow;
this.downFlow = downFlow;
this.sumFlow = upFlow + downFlow;
}

//3 写序列化方法
@Override
public void write(DataOutput out) throws IOException {
out.writeLong(upFlow);
out.writeLong(downFlow);
out.writeLong(sumFlow);
}

//4 反序列化方法
//5 反序列化方法读顺序必须和写序列化方法的写顺序必须一致
@Override
public void readFields(DataInput in) throws IOException {
this.upFlow = in.readLong();
this.downFlow = in.readLong();
this.sumFlow = in.readLong();
}

// 6 编写toString方法,方便后续打印到文本
@Override
public String toString() {
return upFlow + "\t" + downFlow + "\t" + sumFlow;
}

public long getUpFlow() {
return upFlow;
}

public void setUpFlow(long upFlow) {
this.upFlow = upFlow;
}

public long getDownFlow() {
return downFlow;
}

public void setDownFlow(long downFlow) {
this.downFlow = downFlow;
}

public long getSumFlow() {
return sumFlow;
}

public void setSumFlow(long sumFlow) {
this.sumFlow = sumFlow;
}

}

(2)编写mapper

package com.atguigu.mapreduce.flowsum;
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class FlowCountMapper extends Mapper<LongWritable, Text, Text, FlowBean>{

FlowBean v = new FlowBean();
Text k = new Text();

@Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {

// 1 获取一行
String line = value.toString();

// 2 切割字段
String[] fields = line.split("\t");

// 3 封装对象
// 取出手机号码
String phoneNum = fields[1];
// 取出上行流量和下行流量
long upFlow = Long.parseLong(fields[fields.length - 3]);
long downFlow = Long.parseLong(fields[fields.length - 2]);

v.set(downFlow, upFlow);

// 4 写出
context.write(new Text(phoneNum), new FlowBean(upFlow, downFlow));
}
}

(3)编写reducer

package com.atguigu.mapreduce.flowsum;
import java.io.IOException;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class FlowCountReducer extends Reducer<Text, FlowBean, Text, FlowBean> {

@Override
protected void reduce(Text key, Iterable<FlowBean> values, Context context)
throws IOException, InterruptedException {

long sum_upFlow = 0;
long sum_downFlow = 0;

// 1 遍历所用bean,将其中的上行流量,下行流量分别累加
for (FlowBean flowBean : values) {
sum_upFlow += flowBean.getSumFlow();
sum_downFlow += flowBean.getDownFlow();
}

// 2 封装对象
FlowBean resultBean = new FlowBean(sum_upFlow, sum_downFlow);

// 3 写出
context.write(key, resultBean);
}
}

(4)编写驱动

package com.atguigu.mapreduce.flowsum;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class FlowsumDriver {

public static void main(String[] args) throws IllegalArgumentException, IOException, ClassNotFoundException, InterruptedException {

// 1 获取配置信息,或者job对象实例
Configuration configuration = new Configuration();
Job job = Job.getInstance(configuration);

// 6 指定本程序的jar包所在的本地路径
job.setJarByClass(FlowsumDriver.class);

// 2 指定本业务job要使用的mapper/Reducer业务类
job.setMapperClass(FlowCountMapper.class);
job.setReducerClass(FlowCountReducer.class);

// 3 指定mapper输出数据的kv类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(FlowBean.class);

// 4 指定最终输出的数据的kv类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FlowBean.class);

// 5 指定job的输入原始文件所在目录
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

// 7 将job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : 1);
}
}

2.2 需求2:将统计结果按照手机归属地不同省份输出到不同文件中(Partitioner)

0)需求:将统计结果按照手机归属地不同省份输出到不同文件中(分区)

1)数据准备

     数据同上

2)分析

(1)Mapreduce中会将map输出的kv对,按照相同key分组,然后分发给不同的reducetask。默认的分发规则为:根据key的hashcode%reducetask数来分发

(2)如果要按照我们自己的需求进行分组,则需要改写数据分发(分组)组件Partitioner

自定义一个CustomPartitioner继承抽象类:Partitioner

(3)在job驱动中,设置自定义partitioner: job.setPartitionerClass(CustomPartitioner.class)

3)在需求1的基础上,增加一个分区类

package com.atguigu.mapreduce.flowsum;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;

public class ProvincePartitioner extends Partitioner<Text, FlowBean> {

@Override
public int getPartition(Text key, FlowBean value, int numPartitions) {
// 1 获取电话号码的前三位
String preNum = key.toString().substring(0, 3);

int partition = 4;

// 2 判断是哪个省
if ("136".equals(preNum)) {
partition = 0;
}else if ("137".equals(preNum)) {
partition = 1;
}else if ("138".equals(preNum)) {
partition = 2;
}else if ("139".equals(preNum)) {
partition = 3;
}

return partition;
}
}

2)在驱动函数中增加自定义数据分区设置和reduce task设置

package com.atguigu.mapreduce.flowsum;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class FlowsumDriver {

public static void main(String[] args) throws IllegalArgumentException, IOException, ClassNotFoundException, InterruptedException {

// 1 获取配置信息,或者job对象实例
Configuration configuration = new Configuration();
Job job = Job.getInstance(configuration);

// 6 指定本程序的jar包所在的本地路径
job.setJarByClass(FlowsumDriver.class);

// 2 指定本业务job要使用的mapper/Reducer业务类
job.setMapperClass(FlowCountMapper.class);
job.setReducerClass(FlowCountReducer.class);

// 3 指定mapper输出数据的kv类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(FlowBean.class);

// 4 指定最终输出的数据的kv类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FlowBean.class);

// 8 指定自定义数据分区
job.setPartitionerClass(ProvincePartitioner.class);
// 9 同时指定相应数量的reduce task
job.setNumReduceTasks(5);

// 5 指定job的输入原始文件所在目录
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

// 7 将job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : 1);
}
}

2.3 需求3:将统计结果按照总流量倒序排序(全排序)

0)需求

根据需求1产生的结果再次对总流量进行排序。

1)数据准备

     数据同上

2)分析

       (1)把程序分两步走,第一步正常统计总流量,第二步再把结果进行排序

       (2)context.write(总流量,手机号)

       (3)FlowBean实现WritableComparable接口重写compareTo方法

@Override
publicint compareTo(FlowBean o) {
// 倒序排列,从大到小
returnthis.sumFlow > o.getSumFlow() ? -1 : 1;
}

3)代码实现

(1)FlowBean对象在在需求1基础上增加了比较功能

package com.atguigu.mapreduce.sort;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.WritableComparable;

publicclass FlowBean implements WritableComparable<FlowBean> {

privatelong upFlow;
privatelong downFlow;
privatelong sumFlow;

// 反序列化时,需要反射调用空参构造函数,所以必须有
public FlowBean() {
super();
}

public FlowBean(long upFlow, long downFlow) {
super();
this.upFlow = upFlow;
this.downFlow = downFlow;
this.sumFlow = upFlow + downFlow;
}

publicvoid set(long upFlow, long downFlow) {
this.upFlow = upFlow;
this.downFlow = downFlow;
this.sumFlow = upFlow + downFlow;
}

publiclong getSumFlow() {
return sumFlow;
}

publicvoid setSumFlow(long sumFlow) {
this.sumFlow = sumFlow;
}

publiclong getUpFlow() {
return upFlow;
}

publicvoid setUpFlow(long upFlow) {
this.upFlow = upFlow;
}

publiclong getDownFlow() {
return downFlow;
}

publicvoid setDownFlow(long downFlow) {
this.downFlow = downFlow;
}

/**
* 序列化方法
* @param out
* @throws IOException
*/
@Override
publicvoid write(DataOutput out) throws IOException {
out.writeLong(upFlow);
out.writeLong(downFlow);
out.writeLong(sumFlow);
}

/**
* 反序列化方法 注意反序列化的顺序和序列化的顺序完全一致
* @param in
* @throws IOException
*/
@Override
publicvoid readFields(DataInput in) throws IOException {
upFlow = in.readLong();
downFlow = in.readLong();
sumFlow = in.readLong();
}

@Override
public String toString() {
return upFlow + "\t" + downFlow + "\t" + sumFlow;
}

@Override
publicint compareTo(FlowBean o) {
// 倒序排列,从大到小
returnthis.sumFlow > o.getSumFlow() ? -1 : 1;
}
}

(2)编写mapper

package com.atguigu.mapreduce.sort;
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class FlowCountSortMapper extends Mapper<LongWritable, Text, FlowBean, Text>{
FlowBean bean = new FlowBean();
Text v = new Text();

@Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {

// 1 获取一行
String line = value.toString();

// 2 截取
String[] fields = line.split("\t");

// 3 封装对象
String phoneNbr = fields[0];
long upFlow = Long.parseLong(fields[1]);
long downFlow = Long.parseLong(fields[2]);

bean.set(upFlow, downFlow);
v.set(phoneNbr);

// 4 输出
context.write(bean, v);
}
}

(3)编写reducer

package com.atguigu.mapreduce.sort;
import java.io.IOException;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class FlowCountSortReducer extends Reducer<FlowBean, Text, Text, FlowBean>{

@Override
protected void reduce(FlowBean key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {

// 循环输出,避免总流量相同情况
for (Text text : values) {
context.write(text, key);
}
}
}

(4)编写driver

package com.atguigu.mapreduce.sort;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class FlowCountSortDriver {

public static void main(String[] args) throws ClassNotFoundException, IOException, InterruptedException {

// 1 获取配置信息,或者job对象实例
Configuration configuration = new Configuration();
Job job = Job.getInstance(configuration);

// 6 指定本程序的jar包所在的本地路径
job.setJarByClass(FlowCountSortDriver.class);

// 2 指定本业务job要使用的mapper/Reducer业务类
job.setMapperClass(FlowCountSortMapper.class);
job.setReducerClass(FlowCountSortReducer.class);

// 3 指定mapper输出数据的kv类型
job.setMapOutputKeyClass(FlowBean.class);
job.setMapOutputValueClass(Text.class);

// 4 指定最终输出的数据的kv类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FlowBean.class);

// 5 指定job的输入原始文件所在目录
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

// 7 将job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : 1);
}
}

 

2.4 需求4:不同省份输出文件内部排序(部分排序)

1)需求

要求每个省份手机号输出的文件中按照总流量内部排序。

2)分析:

基于需求3,增加自定义分区类即可。

3)案例实操

(1)增加自定义分区类

package com.atguigu.mapreduce.sort;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;

public class ProvincePartitioner extends Partitioner<FlowBean, Text> {

@Override
public int getPartition(FlowBean key, Text value, int numPartitions) {

// 1 获取手机号码前三位
String preNum = value.toString().substring(0, 3);

int partition = 4;

// 2 根据手机号归属地设置分区
if ("136".equals(preNum)) {
partition = 0;
}else if ("137".equals(preNum)) {
partition = 1;
}else if ("138".equals(preNum)) {
partition = 2;
}else if ("139".equals(preNum)) {
partition = 3;
}

return partition;
}
}

(2)在驱动类中添加分区类

// 加载自定义分区类
job.setPartitionerClass(FlowSortPartitioner.class);
// 设置Reducetask个数
job.setNumReduceTasks(5);