在开始对 SpringBoot 服务进行性能优化之前,需要做一些准备,把 SpringBoot 服务的一些数据暴露出来。比如,你的服务用到了缓存,就需要把缓存命中率这些数据进行收集;用到了数据库连接池,就需要把连接池的参数给暴露出来。

这里采用的监控工具是 Prometheus,它是一个是时序数据库,能够存储我们的指标。SpringBoot 可以非常方便地接入到 Prometheus 中

 

SpringBoot 如何开启监控?

创建一个 SpringBoot 项目后,首先加入 maven 依赖

<dependency>
     <groupId>org.springframework.boot</groupId>
     <artifactId>spring-boot-starter-actuator</artifactId>
 </dependency>

 <dependency>
     <groupId>io.micrometer</groupId>
     <artifactId>micrometer-registry-prometheus</artifactId>
 </dependency>

 <dependency>
     <groupId>io.micrometer</groupId>
     <artifactId>micrometer-core</artifactId>
 </dependency>

然后,我们需要在 application.properties 配置文件中,开放相关的监控接口

management.endpoint.metrics.enabled=true
management.endpoints.web.exposure.include=*
management.endpoint.prometheus.enabled=true
management.metrics.export.prometheus.enabled=true

启动之后,我们就可以通过访问监控接口来获取监控数据

springboot 内存动态编译java代码 springboot 内存优化_数据

想要监控业务数据也是比较简单的,你只需要注入一个 MeterRegistry 实例即可,下面是一段示例代码

@Autowired
MeterRegistry registry;

@GetMapping("/test")
@ResponseBody
public String test() {
    registry.counter("test",
            "from", "127.0.0.1",
            "method", "test"
    ).increment();
    return "ok";
}

从监控连接中,我们可以找到刚刚添加的监控信息

test_total{from="127.0.0.1",method="test",} 5.0

这里简单介绍一下流行的Prometheus 监控体系,Prometheus 使用拉的方式获取监控数据,这个暴露数据的过程可以交给功能更加齐全的 telegraf 组件

springboot 内存动态编译java代码 springboot 内存优化_数据_02

如上图,我们通常使用 Grafana 进行监控数据的展示,使用 AlertManager 组件进行提前预警

下图便是一张典型的监控图,可以看到 Redis 的缓存命中率等情况

springboot 内存动态编译java代码 springboot 内存优化_spring_03

 

Java 生成火焰图

火焰图是用来分析程序运行瓶颈的工具,火焰图也可以用来分析 Java 应用。可以从 github 上下载 async-profiler 的压缩包进行相关操作。

比如,我们把它解压到 /root/ 目录,然后以 javaagent 的方式来启动 Java 应用,命令行如下

java -agentpath:/root/build/libasyncProfiler.so=start,svg,file=profile.svg -jar spring-petclinic-2.3.1.BUILD-SNAPSHOT.jar

运行一段时间后,停止进程,可以看到在当前目录下,生成了 profile.svg 文件,这个文件是可以用浏览器打开的
 

优化思路

如下图,在浏览器中输入相应的域名,需要通过 DNS 解析到具体的 IP 地址上,为了保证高可用,我们的服务一般都会部署多份,然后使用 Nginx 做反向代理和负载均衡

springboot 内存动态编译java代码 springboot 内存优化_数据_04

Nginx 根据资源的特性,会承担一部分动静分离的功能。其中,动态功能部分,会进入我们的SpringBoot 服务。SpringBoot 默认使用内嵌的 tomcat 作为 Web 容器,使用典型的 MVC 模式,最终访问到我们的数据

 

HTTP 优化

1.使用 CDN 加速文件获取

比较大的文件,尽量使用 CDN(Content Delivery Network)分发,甚至是一些常用的前端脚本、样式、图片等,都可以放到 CDN 上。CDN 通常能够加快这些文件的获取,网页加载也更加迅速

2.合理设置 Cache-Control 值

浏览器会判断 HTTP 头 Cache-Control 的内容,用来决定是否使用浏览器缓存,这在管理一些静态文件的时候,非常有用,相同作用的头信息还有 Expires。Cache-Control 表示多久之后过期;Expires 则表示什么时候过期

这个参数可以在 Nginx 的配置文件中进行设置

location ~* ^.+\.(ico|gif|jpg|jpeg|png)$ { 
            # 缓存1年
            add_header Cache-Control: no-cache, max-age=31536000;
}

3.减少单页面请求域名的数量

减少每个页面请求的域名数量,尽量保证在 4 个之内。这是因为,浏览器每次访问后端的资源,都需要先查询一次 DNS,然后找到 DNS 对应的 IP 地址,再进行真正的调用

DNS 有多层缓存,比如浏览器会缓存一份、本地主机会缓存、ISP 服务商缓存等。从 DNS 到 IP 地址的转变,通常会花费 20-120ms 的时间。减少域名的数量,可加快资源的获取

4.开启 gzip

开启 gzip,可以先把内容压缩后,浏览器再进行解压。由于减少了传输的大小,会减少带宽的使用,提高传输效率

在 nginx 中可以很容易地开启,配置如下

gzip on;

gzip_min_length 1k;

gzip_buffers 4 16k;

gzip_comp_level 6;

gzip_http_version 1.1;

gzip_types text/plain application/javascript text/css;

5.对资源进行压缩

对 JavaScript 和 CSS,甚至是 HTML 进行压缩。道理类似,现在流行的前后端分离模式,一般都是对这些资源进行压缩的

6.使用 keepalive

由于连接的创建和关闭,都需要耗费资源。用户访问我们的服务后,后续也会有更多的互动,所以保持长连接可以显著减少网络交互,提高性能

nginx 默认开启了对客户端的 keep avlide 支持,你可以通过下面两个参数来调整它的行为

http {
    keepalive_timeout  120s 120s;
    keepalive_requests 10000;
}

nginx 与后端 upstream 的长连接,需要手工开启,参考配置如下

location ~ /{ 
       proxy_pass http://backend;
       proxy_http_version 1.1;
       proxy_set_header Connection "";
}

 

自定义 Web 容器

如果你的项目并发量比较高,想要修改最大线程数、最大连接数等配置信息,可以通过自定义Web 容器的方式,代码如下所示

@SpringBootApplication(proxyBeanMethods = false)
public class App implements WebServerFactoryCustomizer<ConfigurableServletWebServerFactory> {

    public static void main(String[] args) {
        SpringApplication.run(PetClinicApplication.class, args);
    }

    @Override
    public void customize(ConfigurableServletWebServerFactory factory) {
        TomcatServletWebServerFactory f = (TomcatServletWebServerFactory) factory;
        f.setProtocol("org.apache.coyote.http11.Http11Nio2Protocol");
        f.addConnectorCustomizers(c -> {
            Http11NioProtocol protocol = (Http11NioProtocol) c.getProtocolHandler();
            protocol.setMaxConnections(200);
            protocol.setMaxThreads(200);
            protocol.setSelectorTimeout(3000);
            protocol.setSessionTimeout(3000);
            protocol.setConnectionTimeout(3000);
        });
    }
}

注意上面的代码,我们设置了它的协议为 org.apache.coyote.http11.Http11Nio2Protocol,意思就是开启了 Nio2。这个参数在 Tomcat 8.0之后才有,开启之后会增加一部分性能
甚至可以将 tomcat 替换成 undertow。undertow 也是一个 Web 容器,更加轻量级一些,占用的内存更少,启动的守护进程也更少,更改方式如下

<dependency>
      <groupId>org.springframework.boot</groupId>
      <artifactId>spring-boot-starter-web</artifactId>
      <exclusions>
        <exclusion>
          <groupId>org.springframework.boot</groupId>
          <artifactId>spring-boot-starter-tomcat</artifactId>
        </exclusion>
      </exclusions>
    </dependency>

    <dependency>
      <groupId>org.springframework.boot</groupId>
      <artifactId>spring-boot-starter-undertow</artifactId>
    </dependency>

其实,对于 tomcat 优化最为有效的,还是 JVM 参数的配置,比如,使用下面的参数启动,QPS 由 248 上升到 308

-XX:+UseG1GC -Xmx2048m -Xms2048m -XX:+AlwaysPreTouch

 

Skywalking

对于一个 web 服务来说,最缓慢的地方就在于数据库操作,对于如何定位到复杂分布式环境中的问题,这里想要分享另外一个工具:Skywalking

Skywalking 是使用探针技术(JavaAgent)来实现的。通过在 Java 的启动参数中,加入 javaagent 的 Jar 包,即可将性能数据和调用链数据封装,并发送到 Skywalking 的服务器。

下载相应的安装包(如果使用 ES 存储,需要下载专用的安装包),配置好存储之后,即可一键启动

  • 将 agent 的压缩包,解压到相应的目录

tar xvf skywalking-agent.tar.gz  -C /opt/

  • 在业务启动参数中加入 agent 的包。比如,原来的启动命令是

java  -jar /opt/test-service/spring-boot-demo.jar  --spring.profiles.active=dev

  • 改造后的启动命令是

java -javaagent:/opt/skywalking-agent/skywalking-agent.jar -Dskywalking.agent.service_name=the-demo-name  -jar /opt/test-service/spring-boot-demo.ja  --spring.profiles.active=dev

访问一些服务的链接,打开 Skywalking 的 UI,即可看到下图的界面,我们就可以从图中找到响应比较慢 QPS 又比较高的接口,进行专项优化

springboot 内存动态编译java代码 springboot 内存优化_数据_05

 

各个层次的优化方向

1.Controller 层

controller 层用于接收前端的查询参数,然后构造查询结果。现在很多项目都采用前后端分离的架构,所以 controller 层的方法,一般会使用 @ResponseBody 注解,把查询的结果,解析成 JSON 数据返回(兼顾效率和可读性)

由于 controller 只是充当了一个类似功能组合和路由的角色,所以这部分对性能的影响就主要体现在数据集的大小上。如果结果集合非常大,JSON 解析组件就要花费较多的时间进行解析,大结果集不仅会影响解析时间,还会造成内存浪费

假如结果集在解析成 JSON 之前,占用的内存是 10MB,那么在解析过程中,有可能会使用 20M 或者更多的内存去做这个工作。由于返回对象的嵌套层次太深、引用了不该引用的对象(比如非常大的 byte[] 对象),造成了内存使用的飙升

所以,对于一般的服务,保持结果集的精简,是非常有必要的,这也是 DTO(data transfer object)存在的必要。如果你的项目,返回的结果结构比较复杂,对结果集进行一次转换是非常有必要的

2.Service 层

service 层用于处理具体的业务,大部分功能需求都是在这里完成的。service 层一般是使用单例模式,很少会保存状态,而且可以被 controller 复用

service 层的代码组织,对代码的可读性、性能影响都比较大。我们常说的设计模式,大多数都是针对 service 层来说的

service 层会频繁使用更底层的资源,通过组合的方式获取我们所需要的数据

要着重提到的一点,就是分布式事务

springboot 内存动态编译java代码 springboot 内存优化_spring boot_06

如上图,四个操作分散在三个不同的资源中。要想达到一致性,需要三个不同的资源 MySQL、MQ、ElasticSearch 进行统一协调。它们底层的协议,以及实现方式,都是不一样的,那就无法通过 Spring 提供的 Transaction 注解来解决,需要借助外部的组件来完成

很多人都体验过,加入了一些保证一致性的代码,一压测,性能掉的惊掉下巴。分布式事务是性能杀手,因为它要使用额外的步骤去保证一致性,常用的方法有:两阶段提交方案、TCC、本地消息表、MQ 事务消息、分布式事务中间件等

springboot 内存动态编译java代码 springboot 内存优化_spring boot_07

如上图,分布式事务要在改造成本、性能、时效等方面进行综合考虑。有一个介于分布式事务和非事务之间的名词,叫作柔性事务。柔性事务的理念是将业务逻辑和互斥操作,从资源层上移至业务层面

 

关于传统事务和柔性事务,我们来简单比较一下

  • ACID

关系数据库, 最大的特点就是事务处理, 即满足 ACID

  • 原子性(Atomicity):事务中的操作要么都做,要么都不做
  • 一致性(Consistency):系统必须始终处在强一致状态下
  • 隔离性(Isolation):一个事务的执行不能被其他事务所干扰
  • 持久性(Durability):一个已提交的事务对数据库中数据的改变是永久性的
  • BASE

BASE 方法通过牺牲一致性和孤立性来提高可用性和系统性能,BASE 为 Basically Available、Soft-state、Eventually consistent 三者的缩写,其中 BASE 分别代表

  • 基本可用(Basically Available):系统能够基本运行、一直提供服务
  • 软状态(Soft-state):系统不要求一直保持强一致状态
  • 最终一致性(Eventual consistency):系统需要在某一时刻后达到一致性要求

互联网业务,推荐使用补偿事务,完成最终一致性。比如,通过一系列的定时任务,完成对数据的修复

 

3.Dao 层

经过合理的数据缓存,我们都会尽量避免请求穿透到 Dao 层。除非你对 ORM 本身提供的缓存特性特别的熟悉;否则,都推荐你使用更加通用的方式去缓存数据

Dao 层,主要在于对 ORM 框架的使用上。比如,在 JPA 中,如果加了一对多或者多对多的映射关系,而又没有开启懒加载,级联查询的时候就容易造成深层次的检索,造成了内存开销大、执行缓慢的后果

在一些数据量比较大的业务中,多采用分库分表的方式。在这些分库分表组件中,很多简单的查询语句,都会被重新解析后分散到各个节点进行运算,最后进行结果合并

举个例子,select count(*) from a 这句简单的 count 语句,就可能将请求路由到十几张表中去运算,最后在协调节点进行统计,执行效率是可想而知的。目前,分库分表中间件,比较有代表性的是驱动层的 ShardingJdbc 和代理层的 MyCat,它们都有这样的问题。这些组件提供给使用者的视图是一致的,但我们在编码的时候,一定要注意这些区别

 

总结

简单看了一下 SpringBoot 常见的优化思路,然后介绍了三个新的性能分析工具

  • 一个是监控系统 Prometheus,可以看到一些具体的指标大小;
  • 一个是火焰图,可以看到具体的代码热点;
  • 一个是 Skywalking,可以分析分布式环境中的调用链

SpringBoot 自身的 Web 容器是 Tomcat,那我们就可以通过对 Tomcat 的调优来获取性能提升。当然,对于服务上层的负载均衡 Nginx,我们也提供了一系列的优化思路

SpringBoot 作为一个广泛应用的服务框架,在性能优化方面已经做了很多工作,选用了很多高速组件。比如,数据库连接池默认使用 hikaricp,Redis 缓存框架默认使用 lettuce,本地缓存提供 caffeine 等。对于一个普通的数据库交互的 Web 服务来说,缓存是最主要的优化手段