用户行为日志分析是实时数据处理很常见的一个应用场景,比如常见的PV、UV统计。本文将基于Flink从0到1构建一个用户行为日志分析系统,包括架构设计与代码实现。本文分享将完整呈现日志分析系统的数据处理链路,通过本文,你可以了解到:

  • 基于discuz搭建一个论坛平台
  • Flume日志收集系统使用方式
  • Apache日志格式分析
  • Flume与Kafka集成
  • 日志分析处理流程
  • 架构设计与完整的代码实现

项目简介

本文分享会从0到1基于Flink实现一个实时的用户行为日志分析系统,基本架构图如下:




flinksql 按天统计 flink日志按天滚动输出_字段


首先会先搭建一个论坛平台,对论坛平台产生的用户点击日志进行分析。然后使用Flume日志收集系统对产生的Apache日志进行收集,并将其推送到Kafka。接着我们使用Flink对日志进行实时分析处理,将处理之后的结果写入MySQL供前端应用可视化展示。本文主要实现以下三个指标计算:

  • 统计热门板块,即访问量最高的板块
  • 统计热门文章,即访问量最高的帖子文章
  • 统计不同客户端对版块和文章的总访问量

基于discuz搭建一个论坛平台

安装XAMPP

  • 下载
wget https://www.apachefriends.org/xampp-files/5.6.33/xampp-linux-x64-5.6.33-0-installer.run
  • 安装
# 赋予文件执行权限chmod u+x xampp-linux-x64-5.6.33-0-installer.run# 运行安装文件./xampp-linux-x64-5.6.33-0-installer.run
  • 配置环境变量将以下内容加入到 ~/.bash_profile
export XAMPP=/opt/lampp/export PATH=$PATH:$XAMPP:$XAMPP/bin
  • 刷新环境变量
source ~/.bash_profile
  • 启动XAMPP
xampp restart
  • MySQL的root用户密码和权限修改
#修改root用户密码为123qwe update mysql.user set password=PASSWORD('123qwe') where user='root'; flush privileges;  #赋予root用户远程登录权限 grant all privileges on *.* to 'root'@'%' identified by '123qwe' with grant option;flush privileges;

安装Discuz

  • 下载discuz
wget http://download.comsenz.com/DiscuzX/3.2/Discuz_X3.2_SC_UTF8.zip
  • 安装
#删除原有的web应用  rm -rf /opt/lampp/htdocs/*unzip Discuz_X3.2_SC_UTF8.zip –d /opt/lampp/htdocs/cd /opt/lampp/htdocs/  mv upload/*   #修改目录权限 chmod 777 -R /opt/lampp/htdocs/config/chmod 777 -R /opt/lampp/htdocs/data/chmod 777 -R /opt/lampp/htdocs/uc_client/  chmod 777 -R /opt/lampp/htdocs/uc_server/

Discuz基本操作

  • 自定义版块
  • 进入discuz后台:http://kms-4/admin.php
  • 点击顶部的论坛菜单
  • 按照页面提示创建所需版本,可以创建父子版块


flinksql 按天统计 flink日志按天滚动输出_客户端_02


Discuz帖子/版块存储数据库表介

-- 登录ultrax数据库mysql -uroot -p123 ultrax -- 查看包含帖子id及标题对应关系的表-- tid, subject(文章id、标题)select tid, subject from pre_forum_post limit 10;-- fid, name(版块id、标题)select fid, name from pre_forum_forum limit 40;

当我们在各个板块添加帖子之后,如下所示:


flinksql 按天统计 flink日志按天滚动输出_字段_03


修改日志格式

  • 查看访问日志
# 日志默认地址  /opt/lampp/logs/access_log # 实时查看日志命令  tail –f /opt/lampp/logs/access_log
  • 修改日志格式

Apache配置文件名称为httpd.conf,完整路径为/opt/lampp/etc/httpd.conf。由于默认的日志类型为common类型,总共有7个字段。为了获取更多的日志信息,我们需要将其格式修改为combined格式,该日志格式共有9个字段。修改方式如下:

# 启用组合日志文件CustomLog "logs/access_log" combined


flinksql 按天统计 flink日志按天滚动输出_flinksql 按天统计_04


  • 重新加载配置文件
xampp reload

Apache日志格式介绍

192.168.10.1 - - [30/Aug/2020:15:53:15 +0800] "GET /forum.php?mod=forumdisplay&fid=43 HTTP/1.1" 200 30647 "http://kms-4/forum.php" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.135 Safari/537.36"

上面的日志格式共有9个字段,分别用空格隔开。每个字段的具体含义如下:

192.168.10.1 ##(1)客户端的IP地址- ## (2)客户端identity标识,该字段为"-"- ## (3)客户端userid标识,该字段为"-"[30/Aug/2020:15:53:15 +0800] ## (4)服务器完成请求处理时的时间"GET /forum.php?mod=forumdisplay&fid=43 HTTP/1.1" ## (5)请求类型 请求的资源 使用的协议200 ## (6)服务器返回给客户端的状态码,200表示成功30647 ## (7)返回给客户端不包括响应头的字节数,如果没有信息返回,则此项应该是"-""http://kms-4/forum.php" ## (8)Referer请求头"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.135 Safari/537.36" ## (9)客户端的浏览器信息

关于上面的日志格式,可以使用正则表达式进行匹配:

(d{1,3}.d{1,3}.d{1,3}.d{1,3}) (S+) (S+) ([.+?]) ("(.*?)") (d{3}) (S+) ("(.*?)") ("(.*?)")

Flume与Kafka集成

本文使用Flume对产生的Apache日志进行收集,然后推送至Kafka。需要启动Flume agent对日志进行收集,对应的配置文件如下:

# agent的名称为a1a1.sources = source1a1.channels = channel1a1.sinks = sink1# set sourcea1.sources.source1.type = TAILDIRa1.sources.source1.filegroups = f1a1.sources.source1.filegroups.f1 = /opt/lampp/logs/access_loga1sources.source1.fileHeader = flase# 配置sinka1.sinks.sink1.type = org.apache.flume.sink.kafka.KafkaSinka1.sinks.sink1.brokerList=kms-2:9092,kms-3:9092,kms-4:9092a1.sinks.sink1.topic= user_access_logsa1.sinks.sink1.kafka.flumeBatchSize = 20a1.sinks.sink1.kafka.producer.acks = 1a1.sinks.sink1.kafka.producer.linger.ms = 1a1.sinks.sink1.kafka.producer.compression.type = snappy# 配置channela1.channels.channel1.type = filea1.channels.channel1.checkpointDir = /home/kms/data/flume_data/checkpointa1.channels.channel1.dataDirs= /home/kms/data/flume_data/data# 配置binda1.sources.source1.channels = channel1a1.sinks.sink1.channel = channel1

知识点:

Taildir Source相比Exec SourceSpooling Directory Source的优势是什么?

TailDir Source:断点续传、多目录。Flume1.6以前需要自己自定义Source记录每次读取文件位置,实现断点续传

Exec Source:可以实时收集数据,但是在Flume不运行或者Shell命令出错的情况下,数据将会丢失

Spooling Directory Source:监控目录,不支持断点续传

值得注意的是,上面的配置是直接将原始日志push到Kafka。除此之外,我们还可以自定义Flume的拦截器对原始日志先进行过滤处理,同时也可以实现将不同的日志push到Kafka的不同Topic中。

启动Flume Agent

将启动Agent的命令封装成shell脚本:**start-log-collection.sh **,脚本内容如下:

#!/bin/bashecho "start log agent !!!"/opt/modules/apache-flume-1.9.0-bin/bin/flume-ng agent --conf-file /opt/modules/apache-flume-1.9.0-bin/conf/log_collection.conf --name a1 -Dflume.root.logger=INFO,console

查看push到Kafka的日志数据

将控制台消费者命令封装成shell脚本:kafka-consumer.sh,脚本内容如下:

#!/bin/bashecho "kafka consumer "bin/kafka-console-consumer.sh  --bootstrap-server kms-2.apache.com:9092,kms-3.apache.com:9092,kms-4.apache.com:9092  --topic $1 --from-beginning

使用下面命令消费Kafka中的数据:

[kms@kms-2 kafka_2.11-2.1.0]$ ./kafka-consumer.sh  user_access_logs

日志分析处理流程

为了方便解释,下面会对重要代码进行讲解,完整代码移步github:https://github.com/jiamx/flink-log-analysis


flinksql 按天统计 flink日志按天滚动输出_客户端_05


创建MySQL数据库和目标表

-- 客户端访问量统计CREATE TABLE `client_ip_access` (  `client_ip` char(50) NOT NULL COMMENT '客户端ip',  `client_access_cnt` bigint(20) NOT NULL COMMENT '访问次数',  `statistic_time` text NOT NULL COMMENT '统计时间',  PRIMARY KEY (`client_ip`)) ENGINE=InnoDB DEFAULT CHARSET=utf8;-- 热门文章统计CREATE TABLE `hot_article` (  `article_id` int(10) NOT NULL COMMENT '文章id',  `subject` varchar(80) NOT NULL COMMENT '文章标题',  `article_pv` bigint(20) NOT NULL COMMENT '访问次数',  `statistic_time` text NOT NULL COMMENT '统计时间',  PRIMARY KEY (`article_id`)) ENGINE=InnoDB DEFAULT CHARSET=utf8;-- 热门板块统计CREATE TABLE `hot_section` (  `section_id` int(10) NOT NULL COMMENT '版块id',  `name` char(50) NOT NULL COMMENT '版块标题',  `section_pv` bigint(20) NOT NULL COMMENT '访问次数',  `statistic_time` text NOT NULL COMMENT '统计时间',  PRIMARY KEY (`section_id`)) ENGINE=InnoDB DEFAULT CHARSET=utf8;

AccessLogRecord类

该类封装了日志所包含的字段数据,共有9个字段。

/** * 使用lombok * 原始日志封装类 */@Datapublic class AccessLogRecord {    public String clientIpAddress; // 客户端ip地址    public String clientIdentity; // 客户端身份标识,该字段为 `-`    public String remoteUser; // 用户标识,该字段为 `-`    public String dateTime; //日期,格式为[day/month/yearhourminutesecond zone]    public String request; // url请求,如:`GET /foo ...`    public String httpStatusCode; // 状态码,如:200; 404.    public String bytesSent; // 传输的字节数,有可能是 `-`    public String referer; // 参考链接,即来源页    public String userAgent;  // 浏览器和操作系统类型}

LogParse类

该类是日志解析类,通过正则表达式对日志进行匹配,对匹配上的日志进行按照字段解析。

public class LogParse implements Serializable {    //构建正则表达式    private String regex = "(d{1,3}.d{1,3}.d{1,3}.d{1,3}) (S+) (S+) ([.+?]) ("(.*?)") (d{3}) (S+) ("(.*?)") ("(.*?)")";    private Pattern p = Pattern.compile(regex);    /*     *构造访问日志的封装类对象     * */    public AccessLogRecord buildAccessLogRecord(Matcher matcher) {        AccessLogRecord record = new AccessLogRecord();        record.setClientIpAddress(matcher.group(1));        record.setClientIdentity(matcher.group(2));        record.setRemoteUser(matcher.group(3));        record.setDateTime(matcher.group(4));        record.setRequest(matcher.group(5));        record.setHttpStatusCode(matcher.group(6));        record.setBytesSent(matcher.group(7));        record.setReferer(matcher.group(8));        record.setUserAgent(matcher.group(9));        return record;    }    /**     * @param record:record表示一条apache combined 日志     * @return 解析日志记录,将解析的日志封装成一个AccessLogRecord类     */    public AccessLogRecord parseRecord(String record) {        Matcher matcher = p.matcher(record);        if (matcher.find()) {            return buildAccessLogRecord(matcher);        }        return null;    }    /**     * @param request url请求,类型为字符串,类似于 "GET /the-uri-here HTTP/1.1"     * @return 一个三元组(requestType, uri, httpVersion). requestType表示请求类型,如GET, POST等     */    public Tuple3 parseRequestField(String request) {        //请求的字符串格式为:“GET /test.php HTTP/1.1”,用空格切割        String[] arr = request.split(" ");        if (arr.length == 3) {            return Tuple3.of(arr[0], arr[1], arr[2]);        } else {            return null;        }    }    /**     * 将apache日志中的英文日期转化为指定格式的中文日期     *     * @param dateTime 传入的apache日志中的日期字符串,"[21/Jul/2009:02:48:13 -0700]"     * @return     */    public String parseDateField(String dateTime) throws ParseException {        // 输入的英文日期格式        String inputFormat = "dd/MMM/yyyy:HH:mm:ss";        // 输出的日期格式        String outPutFormat = "yyyy-MM-dd HH:mm:ss";        String dateRegex = "[(.*?) .+]";        Pattern datePattern = Pattern.compile(dateRegex);        Matcher dateMatcher = datePattern.matcher(dateTime);        if (dateMatcher.find()) {            String dateString = dateMatcher.group(1);            SimpleDateFormat dateInputFormat = new SimpleDateFormat(inputFormat, Locale.ENGLISH);            Date date = dateInputFormat.parse(dateString);            SimpleDateFormat dateOutFormat = new SimpleDateFormat(outPutFormat);            String formatDate = dateOutFormat.format(date);            return formatDate;        } else {            return "";        }    }    /**     * 解析request,即访问页面的url信息解析     * "GET /about/forum.php?mod=viewthread&tid=5&extra=page%3D1 HTTP/1.1"     * 匹配出访问的fid:版本id     * 以及tid:文章id     * @param request     * @return     */    public Tuple2 parseSectionIdAndArticleId(String request) {        // 匹配出前面是"forumdisplay&fid="的数字记为版块id        String sectionIdRegex = "(?mod=forumdisplay&fid=)(d+)";        Pattern sectionPattern = Pattern.compile(sectionIdRegex);        // 匹配出前面是"tid="的数字记为文章id        String articleIdRegex = "(?mod=viewthread&tid=)(d+)";        Pattern articlePattern = Pattern.compile(articleIdRegex);        String[] arr = request.split(" ");        String sectionId = "";        String articleId = "";        if (arr.length == 3) {            Matcher sectionMatcher = sectionPattern.matcher(arr[1]);            Matcher articleMatcher = articlePattern.matcher(arr[1]);                sectionId = (sectionMatcher.find()) ? sectionMatcher.group(2) : "";               articleId = (articleMatcher.find()) ? articleMatcher.group(2) : "";        }        return  Tuple2.of(sectionId, articleId);    }}

LogAnalysis类

该类是日志处理的基本逻辑

public class LogAnalysis {    public static void main(String[] args) throws Exception {        StreamExecutionEnvironment senv = StreamExecutionEnvironment.getExecutionEnvironment();        // 开启checkpoint,时间间隔为毫秒        senv.enableCheckpointing(5000L);        // 选择状态后端        // 本地测试        // senv.setStateBackend(new FsStateBackend("file:///E://checkpoint"));        // 集群运行        senv.setStateBackend(new FsStateBackend("hdfs://kms-1:8020/flink-checkpoints"));        // 重启策略        senv.setRestartStrategy(                RestartStrategies.fixedDelayRestart(3, Time.of(2, TimeUnit.SECONDS) ));        EnvironmentSettings settings = EnvironmentSettings.newInstance()                .useBlinkPlanner()                .inStreamingMode()                .build();        StreamTableEnvironment tEnv = StreamTableEnvironment.create(senv, settings);        // kafka参数配置        Properties props = new Properties();        // kafka broker地址        props.put("bootstrap.servers", "kms-2:9092,kms-3:9092,kms-4:9092");        // 消费者组        props.put("group.id", "log_consumer");        // kafka 消息的key序列化器        props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");        // kafka 消息的value序列化器        props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");        props.put("auto.offset.reset", "earliest");        FlinkKafkaConsumer kafkaConsumer = new FlinkKafkaConsumer(                "user_access_logs",                new SimpleStringSchema(),                props);        DataStreamSource logSource = senv.addSource(kafkaConsumer);        // 获取有效的日志数据        DataStream availableAccessLog = LogAnalysis.getAvailableAccessLog(logSource);        // 获取[clienIP,accessDate,sectionId,articleId]        DataStream> fieldFromLog = LogAnalysis.getFieldFromLog(availableAccessLog);        //从DataStream中创建临时视图,名称为logs        // 添加一个计算字段:proctime,用于维表JOIN        tEnv.createTemporaryView("logs",                fieldFromLog,                $("clientIP"),                $("accessDate"),                $("sectionId"),                $("articleId"),                $("proctime").proctime());        // 需求1:统计热门板块        LogAnalysis.getHotSection(tEnv);        // 需求2:统计热门文章       LogAnalysis.getHotArticle(tEnv);        // 需求3:统计不同客户端ip对版块和文章的总访问量       LogAnalysis.getClientAccess(tEnv);        senv.execute("log-analysisi");    }    /**     * 统计不同客户端ip对版块和文章的总访问量     * @param tEnv     */    private static void getClientAccess(StreamTableEnvironment tEnv) {        // sink表        // [client_ip,client_access_cnt,statistic_time]        // [客户端ip,访问次数,统计时间]        String client_ip_access_ddl = "" +                "CREATE TABLE client_ip_access (" +                "    client_ip STRING ," +                "    client_access_cnt BIGINT," +                "    statistic_time STRING," +                "    PRIMARY KEY (client_ip) NOT ENFORCED" +                ")WITH (" +                "    'connector' = 'jdbc'," +                "    'url' = 'jdbc:mysql://kms-4:3306/statistics?useUnicode=true&characterEncoding=utf-8'," +                "    'table-name' = 'client_ip_access', " +                "    'driver' = 'com.mysql.jdbc.Driver'," +                "    'username' = 'root'," +                "    'password' = '123qwe'" +                ") ";        tEnv.executeSql(client_ip_access_ddl);        String client_ip_access_sql = "" +                "INSERT INTO client_ip_access" +                "SELECT" +                "    clientIP," +                "    count(1) AS access_cnt," +                "    FROM_UNIXTIME(UNIX_TIMESTAMP()) AS statistic_time" +                "FROM" +                "    logs " +                "WHERE" +                "    articleId <> 0 " +                "    OR sectionId <> 0 " +                "GROUP BY" +                "    clientIP "               ;        tEnv.executeSql(client_ip_access_sql);    }    /**     * 统计热门文章     * @param tEnv     */    private static void getHotArticle(StreamTableEnvironment tEnv) {        // JDBC数据源        // 文章id及标题对应关系的表,[tid, subject]分别为:文章id和标题        String pre_forum_post_ddl = "" +                "CREATE TABLE pre_forum_post (" +                "    tid INT," +                "    subject STRING," +                "    PRIMARY KEY (tid) NOT ENFORCED" +                ") WITH (" +                "    'connector' = 'jdbc'," +                "    'url' = 'jdbc:mysql://kms-4:3306/ultrax'," +                "    'table-name' = 'pre_forum_post', " +                "    'driver' = 'com.mysql.jdbc.Driver'," +                "    'username' = 'root'," +                "    'password' = '123qwe'" +                ")";        // 创建pre_forum_post数据源        tEnv.executeSql(pre_forum_post_ddl);        // 创建MySQL的sink表        // [article_id,subject,article_pv,statistic_time]        // [文章id,标题名称,访问次数,统计时间]        String hot_article_ddl = "" +                "CREATE TABLE hot_article (" +                "    article_id INT," +                "    subject STRING," +                "    article_pv BIGINT ," +                "    statistic_time STRING," +                "    PRIMARY KEY (article_id) NOT ENFORCED" +                ")WITH (" +                "    'connector' = 'jdbc'," +                "    'url' = 'jdbc:mysql://kms-4:3306/statistics?useUnicode=true&characterEncoding=utf-8'," +                "    'table-name' = 'hot_article', " +                "    'driver' = 'com.mysql.jdbc.Driver'," +                "    'username' = 'root'," +                "    'password' = '123qwe'" +                ")";        tEnv.executeSql(hot_article_ddl);        // 向MySQL目标表insert数据        String hot_article_sql = "" +                "INSERT INTO hot_article" +                "SELECT " +                "    a.articleId," +                "    b.subject," +                "    count(1) as article_pv," +                "    FROM_UNIXTIME(UNIX_TIMESTAMP()) AS statistic_time" +                "FROM logs a " +                "  JOIN pre_forum_post FOR SYSTEM_TIME AS OF a.proctime as b ON a.articleId = b.tid" +                "WHERE a.articleId <> 0" +                "GROUP BY a.articleId,b.subject" +                "ORDER BY count(1) desc" +                "LIMIT 10";        tEnv.executeSql(hot_article_sql);    }    /**     * 统计热门板块     *     * @param tEnv     */    public static void getHotSection(StreamTableEnvironment tEnv) {        // 板块id及其名称对应关系表,[fid, name]分别为:版块id和板块名称        String pre_forum_forum_ddl = "" +                "CREATE TABLE pre_forum_forum (" +                "    fid INT," +                "    name STRING," +                "    PRIMARY KEY (fid) NOT ENFORCED" +                ") WITH (" +                "    'connector' = 'jdbc'," +                "    'url' = 'jdbc:mysql://kms-4:3306/ultrax'," +                "    'table-name' = 'pre_forum_forum', " +                "    'driver' = 'com.mysql.jdbc.Driver'," +                "    'username' = 'root'," +                "    'password' = '123qwe'," +                "    'lookup.cache.ttl' = '10'," +                "    'lookup.cache.max-rows' = '1000'" +                ")";        // 创建pre_forum_forum数据源        tEnv.executeSql(pre_forum_forum_ddl);        // 创建MySQL的sink表        // [section_id,name,section_pv,statistic_time]        // [板块id,板块名称,访问次数,统计时间]        String hot_section_ddl = "" +                "CREATE TABLE hot_section (" +                "    section_id INT," +                "    name STRING ," +                "    section_pv BIGINT," +                "    statistic_time STRING," +                "    PRIMARY KEY (section_id) NOT ENFORCED  " +                ") WITH (" +                "    'connector' = 'jdbc'," +                "    'url' = 'jdbc:mysql://kms-4:3306/statistics?useUnicode=true&characterEncoding=utf-8'," +                "    'table-name' = 'hot_section', " +                "    'driver' = 'com.mysql.jdbc.Driver'," +                "    'username' = 'root'," +                "    'password' = '123qwe'" +                ")";        // 创建sink表:hot_section        tEnv.executeSql(hot_section_ddl);        //统计热门板块        // 使用日志流与MySQL的维表数据进行JOIN        // 从而获取板块名称        String hot_section_sql = "" +                "INSERT INTO hot_section" +                "SELECT" +                "    a.sectionId," +                "    b.name," +                "    count(1) as section_pv," +                "    FROM_UNIXTIME(UNIX_TIMESTAMP()) AS statistic_time " +                "FROM" +                "    logs a" +                "    JOIN pre_forum_forum FOR SYSTEM_TIME AS OF a.proctime as b ON a.sectionId = b.fid " +                "WHERE" +                "    a.sectionId <> 0 " +                "GROUP BY a.sectionId, b.name" +                "ORDER BY count(1) desc" +                "LIMIT 10";        // 执行数据insert        tEnv.executeSql(hot_section_sql);    }    /**     * 获取[clienIP,accessDate,sectionId,articleId]     * 分别为客户端ip,访问日期,板块id,文章id     *     * @param logRecord     * @return     */    public static DataStream> getFieldFromLog(DataStream logRecord) {        DataStream> fieldFromLog = logRecord.map(new MapFunction>() {            @Override            public Tuple4 map(AccessLogRecord accessLogRecord) throws Exception {                LogParse parse = new LogParse();                String clientIpAddress = accessLogRecord.getClientIpAddress();                String dateTime = accessLogRecord.getDateTime();                String request = accessLogRecord.getRequest();                String formatDate = parse.parseDateField(dateTime);                Tuple2 sectionIdAndArticleId = parse.parseSectionIdAndArticleId(request);                if (formatDate == "" || sectionIdAndArticleId == Tuple2.of("", "")) {                    return new Tuple4("0.0.0.0", "0000-00-00 00:00:00", 0, 0);                }                Integer sectionId = (sectionIdAndArticleId.f0 == "") ? 0 : Integer.parseInt(sectionIdAndArticleId.f0);                Integer articleId = (sectionIdAndArticleId.f1 == "") ? 0 : Integer.parseInt(sectionIdAndArticleId.f1);                return new Tuple4<>(clientIpAddress, formatDate, sectionId, articleId);            }        });        return fieldFromLog;    }    /**     * 筛选可用的日志记录     *     * @param accessLog     * @return     */    public static DataStream getAvailableAccessLog(DataStream accessLog) {        final LogParse logParse = new LogParse();        //解析原始日志,将其解析为AccessLogRecord格式        DataStream filterDS = accessLog.map(new MapFunction() {            @Override            public AccessLogRecord map(String log) throws Exception {                return logParse.parseRecord(log);            }        }).filter(new FilterFunction() {            //过滤掉无效日志            @Override            public boolean filter(AccessLogRecord accessLogRecord) throws Exception {                return !(accessLogRecord == null);            }        }).filter(new FilterFunction() {            //过滤掉状态码非200的记录,即保留请求成功的日志记录            @Override            public boolean filter(AccessLogRecord accessLogRecord) throws Exception {                return !accessLogRecord.getHttpStatusCode().equals("200");            }        });        return filterDS;    }}

将上述代码打包上传到集群运行,在执行提交命令之前,需要先将Hadoop的依赖jar包放置在Flink安装目录下的lib文件下:flink-shaded-hadoop-2-uber-2.7.5-10.0.jar,因为我们配置了HDFS上的状态后端,而Flink的release包不含有Hadoop的依赖Jar包。


flinksql 按天统计 flink日志按天滚动输出_字段_06


否则会报如下错误:

Caused by: org.apache.flink.core.fs.UnsupportedFileSystemSchemeException: Hadoop is not in the classpath/dependencies.

提交到集群

编写提交命令脚本

#!/bin/bash/opt/modules/flink-1.11.1/bin/flink run -m kms-1:8081 -c com.jmx.analysis.LogAnalysis /opt/softwares/com.jmx-1.0-SNAPSHOT.jar

提交之后,访问Flink的Web界面,查看任务:


flinksql 按天统计 flink日志按天滚动输出_flinksql 按天统计_07


此时访问论坛,点击板块和帖子文章,观察数据库变化:


flinksql 按天统计 flink日志按天滚动输出_flinksql 按天统计_08


总结

本文主要分享了从0到1构建一个用户行为日志分析系统。首先,基于discuz搭建了论坛平台,针对论坛产生的日志,使用Flume进行收集并push到Kafka中;接着使用Flink对其进行分析处理;最后将处理结果写入MySQL供可视化展示使用。