PV操作的核心就是 PV操作可以同时起到同步与互斥的作用。
1.同步就是通过P操作获取信号量,V操作释放信号量来进行。
2.互斥其实就是,同时操作P操作,结束后进行V操作即可做到。
Java上实现PV操作可以通过Semaphore来实现。
package com.multithread.pvoperator;
import java.util.concurrent.Semaphore;
/*
P(S):
①将信号量S的值减1,即S=S-1;
②如果S>=0,则该进程继续执行;否则该进程置为等待状态。
V(S):
①将信号量S的值加1,即S=S+1;
②该进程继续执行;如果该信号的等待队列中有等待进程就唤醒一等待进程。
*
* */
public class PVObject {
private Semaphore mSemaphore =null;
private int Max_size = 0xff;
private String name = null;
public PVObject(int size,String name)
{
if(size>0)
{
Max_size = size;
mSemaphore = new Semaphore(size);
}
this.name = name;
}
public PVObject(String name)
{
Max_size = 1;
mSemaphore = new Semaphore(1);
this.name = name;
}
public void Init(int status)
{
if(status<0 || status>Max_size)
{
System.out.println("[PVObject][Init]"+name+" wrong,status:"+status);
return;
}
if(status == Max_size)
{
return;
}
try {
mSemaphore.release(Max_size);
mSemaphore.acquire(Max_size-status);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
public void P()
{
try {
//
mSemaphore.acquire();
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
public void V()
{
mSemaphore.release();
}
}
分水果问题Java是实现:
package com.multithread.pvoperator;
import java.util.LinkedList;
import java.util.Queue;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.Executor;
import java.util.concurrent.Executors;
public class Fruit {
/*
* 下面先考虑同步情况即所有“等待”情况:
第一.爸爸要等待盘子为空。
第二.儿子要等待盘中水果是桔子。
第三.女儿要等待盘中水果是苹果。
接下来来考虑要互斥处理的资源,看起来盘子好像是要作互斥处理的,
但由于题目中的爸爸、儿子、女儿均只有一个,并且他们访问盘子的条件都不一样,
所以他们根本不会同时去访问盘子,因此盘子也就不用作互斥处理了
*
* */
public PVObject mEmptyDash = new PVObject("emptyDash");//1
public PVObject mApple = new PVObject("apple"); //0
public PVObject mOranger = new PVObject("oranger"); //0
public boolean mDadEnd = false;
public CountDownLatch mLatchDown = new CountDownLatch(3);
public CountDownLatch mLatchStart = new CountDownLatch(3);
public Queue<Integer> mQueue = new LinkedList<Integer>();
public void Start()
{
mEmptyDash.Init(1);
mApple.Init(0);
mOranger.Init(0);
mQueue.clear();
Executor mEcecutor = Executors.newFixedThreadPool(5);
mEcecutor.execute(new Dad(this));
mEcecutor.execute(new Daughter(this));
mEcecutor.execute(new Son(this));
try {
mLatchStart.await();
System.out.println("all thread start");
mLatchDown.await();
System.out.println("all thread down");
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
public class Dad extends Thread{
public Fruit mFruit = null;
boolean flag = true;
public int MAX_FRUIT_COUNT = 20;
public int index = 0;
public Dad(Fruit f)
{
mFruit = f;
}
@Override
public void run() {
mLatchStart.countDown();
while(flag)
{
mFruit.mEmptyDash.P();
index++;
if(index >=MAX_FRUIT_COUNT)
{
flag = false;
}
mQueue.offer(index);
if((int)(Math.random()*2) == 1)
{
System.out.println("dad put apple"+index+" to dash");
//apply
mFruit.mApple.V();
}
else
{
//oranger
System.out.println("dad put oranger"+index+" to dash");
mFruit.mOranger.V();
}
}
mFruit.mDadEnd = true;
System.out.println("dad thread is end");
mLatchDown.countDown();
}
}
public class Daughter extends Thread{
public Fruit mFruit = null;
boolean flag = true;
public Daughter(Fruit f)
{
mFruit = f;
}
@Override
public void run() {
mLatchStart.countDown();
while(flag)
{
mFruit.mOranger.P();
if(mQueue.size()>0)
{
System.out.println("Daughter get oranger"+mQueue.poll()+" from dash");
mFruit.mEmptyDash.V();
}
else
{
System.out.println("Daughter get oranger from dash,but dash is empty");
}
if(mFruit.mDadEnd == true)
{
flag = false;
}
}
System.out.println("Daughter thread is end");
//notify son down,for this dad is down.
mApple.V();
mLatchDown.countDown();
}
}
public class Son extends Thread{
public Fruit mFruit = null;
boolean flag = true;
public Son(Fruit f)
{
mFruit = f;
}
@Override
public void run() {
mLatchStart.countDown();
while(flag)
{
mFruit.mApple.P();
if(mQueue.size()>0)
{
System.out.println("Son get apple"+mQueue.poll()+" from dash");
mFruit.mEmptyDash.V();
}
else
{
System.out.println("Son get apple from dash,but dash is empty");
}
if(mFruit.mDadEnd == true)
{
flag = false;
}
}
System.out.println("Son thread is end");
mOranger.V();
mLatchDown.countDown();
}
}
}
安全岛问题:
package com.multithread.pvoperator;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.Executor;
import java.util.concurrent.Executors;
public class SafeIsland {
public PVObject NT = new PVObject("NLoad");
public PVObject TN = new PVObject("TLoad");
public PVObject K = new PVObject("K");
public PVObject L = new PVObject("L");
public static final int MAX_NANKAI_CAR_COUNT = 2;
public static final int MAX_TIANJING_CAR_COUNT = 3;
public CountDownLatch mLatchDown = new CountDownLatch(MAX_NANKAI_CAR_COUNT+MAX_TIANJING_CAR_COUNT);
public class NanKaiCar extends Thread{
String name = null;
public NanKaiCar(String name)
{
this.name = name;
}
@Override
public void run() {
System.out.println("[NanKaiCar]"+name+" Thread start");
try {
Thread.sleep((long) (Math.random()*100));
NT.P();
System.out.println("[NanKaiCar]"+name+" enter crossing N");
K.P();
System.out.println("[NanKaiCar]"+name+" walk to M:N->M");
Thread.sleep((long) (Math.random()*1000));
System.out.println("[NanKaiCar]"+name+" start walk to T");
K.V();
L.P();
System.out.println("[NanKaiCar]"+name+" walk to T:M->T");
L.V();
NT.V();
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
mLatchDown.countDown();
System.out.println("[NanKaiCar]"+name+" walk down");
}
}
public class TianJingCar extends Thread{
String name = null;
public TianJingCar(String name)
{
this.name = name;
}
@Override
public void run() {
try {
System.out.println("[TianJingCar]"+name+" Thread start");
Thread.sleep((long) (Math.random()*100));
TN.P();
System.out.println("[TianJingCar]"+name+" enter crossing T");
L.P();
System.out.println("[TianJingCar]"+name+" walk to M:T->M");
Thread.sleep((long) (Math.random()*1000));
System.out.println("[TianJingCar]"+name+" start walk to N");
L.V();
K.P();
System.out.println("[TianJingCar]"+name+" walk to T:M->N");
K.V();
TN.V();
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
mLatchDown.countDown();
System.out.println("[TianJingCar]"+name+" walk down");
}
}
public void start()
{
NT.Init(1);
TN.Init(1);
K.Init(1);
L.Init(1);
Executor mEcecutor = Executors.newFixedThreadPool(MAX_TIANJING_CAR_COUNT+MAX_NANKAI_CAR_COUNT+1);
for(int i =1;i<=MAX_NANKAI_CAR_COUNT;i++)
{
mEcecutor.execute(new NanKaiCar("carN"+i));
}
for(int j=1;j<=MAX_TIANJING_CAR_COUNT;j++)
{
mEcecutor.execute(new TianJingCar("carT"+j));
}
try {
mLatchDown.await();
System.out.println("all car has pass road");
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
生产消费者问题伪代码:
package com.multithread.pvoperator;
public class Prosumer {
//PV 分析 生产者,消费者问题
/*同步: 生产者:缓冲区有空间,就放入数据 P(EmptyS) 只有空和不空,信号量为1
* 消费者:缓冲区有数据,就读取数据,并移走数据 P(NotEmptyS),信号量为缓冲区大小
*互斥: 生产者 写入数据,和消费者移走数据互斥 P(OperatorS),用来互斥,信号量为1
* 消费者异步读取移动数据,互斥
* */
public class Productor extends Thread{
@Override
public void run() {
while(true)
{
P(EmptyS);
P(OperatorS);
//operator data
V(OperatorS);
V(NotEmptyS);//通知不为空
}
}
}
public class Consumer extends Thread{
@Override
public void run() {
P(NotEmptyS);
P(OperatorS);
//operator data
V(OperatorS);
V((EmptyS);
}
}
}
package com.multithread.pvoperator;
import java.util.LinkedList;
import java.util.Queue;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.Executor;
import java.util.concurrent.Executors;
public class Fruit {
/*
* 下面先考虑同步情况即所有“等待”情况:
第一.爸爸要等待盘子为空。
第二.儿子要等待盘中水果是桔子。
第三.女儿要等待盘中水果是苹果。
接下来来考虑要互斥处理的资源,看起来盘子好像是要作互斥处理的,
但由于题目中的爸爸、儿子、女儿均只有一个,并且他们访问盘子的条件都不一样,
所以他们根本不会同时去访问盘子,因此盘子也就不用作互斥处理了
*
* */
public PVObject mEmptyDash = new PVObject("emptyDash");//1
public PVObject mApple = new PVObject("apple"); //0
public PVObject mOranger = new PVObject("oranger"); //0
public boolean mDadEnd = false;
public CountDownLatch mLatchDown = new CountDownLatch(3);
public CountDownLatch mLatchStart = new CountDownLatch(3);
public Queue<Integer> mQueue = new LinkedList<Integer>();
public void Start()
{
mEmptyDash.Init(1);
mApple.Init(0);
mOranger.Init(0);
mQueue.clear();
Executor mEcecutor = Executors.newFixedThreadPool(5);
mEcecutor.execute(new Dad(this));
mEcecutor.execute(new Daughter(this));
mEcecutor.execute(new Son(this));
try {
mLatchStart.await();
System.out.println("all thread start");
mLatchDown.await();
System.out.println("all thread down");
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
public class Dad extends Thread{
public Fruit mFruit = null;
boolean flag = true;
public int MAX_FRUIT_COUNT = 20;
public int index = 0;
public Dad(Fruit f)
{
mFruit = f;
}
@Override
public void run() {
mLatchStart.countDown();
while(flag)
{
mFruit.mEmptyDash.P();
index++;
if(index >=MAX_FRUIT_COUNT)
{
flag = false;
}
mQueue.offer(index);
if((int)(Math.random()*2) == 1)
{
System.out.println("dad put apple"+index+" to dash");
//apply
mFruit.mApple.V();
}
else
{
//oranger
System.out.println("dad put oranger"+index+" to dash");
mFruit.mOranger.V();
}
}
mFruit.mDadEnd = true;
System.out.println("dad thread is end");
mLatchDown.countDown();
}
}
public class Daughter extends Thread{
public Fruit mFruit = null;
boolean flag = true;
public Daughter(Fruit f)
{
mFruit = f;
}
@Override
public void run() {
mLatchStart.countDown();
while(flag)
{
mFruit.mOranger.P();
if(mQueue.size()>0)
{
System.out.println("Daughter get oranger"+mQueue.poll()+" from dash");
mFruit.mEmptyDash.V();
}
else
{
System.out.println("Daughter get oranger from dash,but dash is empty");
}
if(mFruit.mDadEnd == true)
{
flag = false;
}
}
System.out.println("Daughter thread is end");
//notify son down,for this dad is down.
mApple.V();
mLatchDown.countDown();
}
}
public class Son extends Thread{
public Fruit mFruit = null;
boolean flag = true;
public Son(Fruit f)
{
mFruit = f;
}
@Override
public void run() {
mLatchStart.countDown();
while(flag)
{
mFruit.mApple.P();
if(mQueue.size()>0)
{
System.out.println("Son get apple"+mQueue.poll()+" from dash");
mFruit.mEmptyDash.V();
}
else
{
System.out.println("Son get apple from dash,but dash is empty");
}
if(mFruit.mDadEnd == true)
{
flag = false;
}
}
System.out.println("Son thread is end");
mOranger.V();
mLatchDown.countDown();
}
}
}