文章目录
- 写在篇前
- 三维绘图函数
- LinePlot
- ScatterPlot
- WireframePlot
- SurfacePlot
- ContourPlot
- FilledContourPlot
- PolygonPlot
- BarPlot
- Text
- 写在篇后
写在篇前
matplotlib也支持三维作图,但是相对于matlab来讲,感觉功能更弱。当然话说回来,三维作图用的场景相对也更少,所以呢,有一定的知识储备就够了。matplotlib绘制三维图形依赖于mpl_toolkits.mplot3d
,用法也比较简单,只需要一个关键字参数projection='3d'
就可以创建三维Axes。
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
你可能会看到有的教程写的是ax = Axes3D(fig)
,这是version1.0.0之前的写法
三维绘图函数
LinePlot
Axes3D.``plot
(xs, ys, *args, zdir=‘z’, **kwargs)
其他参数向下传递给plot
函数
Argument | Description |
xs, ys | x、y 坐标 |
zs | z 坐标,可以是一个标量或一个x*y维矩阵 |
zdir | 当绘制二维图像时的z轴方向 |
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['legend.fontsize'] = 10
fig = plt.figure()
ax = fig.gca(projection='3d') # get current axes
# Prepare arrays x, y, z
theta = np.linspace(-4 * np.pi, 4 * np.pi, 100)
z = np.linspace(-2, 2, 100)
r = z**2 + 1
x = r * np.sin(theta)
y = r * np.cos(theta)
ax.plot(x, y, z, label='parametric curve')
ax.legend() # legend content dertermined by label above
plt.show()
ScatterPlot
Axes3D.``scatter
(xs, ys, zs=0, zdir=‘z’, s=20, c=None, depthshade=True, *args, **kwargs)
返回Patch3DCollection,
其他参数向下传递给plot
函数
Argument | Description |
xs, ys | x,y坐标点 |
zs | z 坐标,可以是一个标量或一个x*y维矩阵,默认是0. |
zdir | 当绘制二维图像时的z轴方向 |
s | size,即散点大小 |
c | 颜色映射,其取值可以是非常多类型,有时间专门写一篇讲解 |
depthshade | 是否渲染景深(或则就说阴影吧),默认是True. |
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
# Fixing random state for reproducibility
np.random.seed(19680801)
def randrange(n, vmin, vmax):
'''
Helper function to make an array of random numbers having shape (n, )
with each number distributed Uniform(vmin, vmax).
'''
return (vmax - vmin)*np.random.rand(n) + vmin
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
n = 100
# For each set of style and range settings, plot n random points in the box
# defined by x in [23, 32], y in [0, 100], z in [zlow, zhigh].
for c, m, zlow, zhigh in [('r', 'o', -50, -25), ('b', '^', -30, -5)]:
xs = randrange(n, 23, 32)
ys = randrange(n, 0, 100)
zs = randrange(n, zlow, zhigh)
ax.scatter(xs, ys, zs, c=c, marker=m)
ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')
plt.show()
WireframePlot
Axes3D.``plot_wireframe
(X, Y, Z, *args, **kwargs)
Argument | Description |
X, Y,Z | 坐标点 |
rcount,ccount | 采样数,越大采样越多,默认50 |
rstride,cstride | 采样步长,越小采样越多 |
**kwargs | 其他参数向下传入Line3DCollection |
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# Grab some test data.
X, Y, Z = axes3d.get_test_data(0.05)
# Plot a basic wireframe.
ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10)
plt.show()
SurfacePlot
Axes3D.``plot_surface
(X, Y, Z, *args, norm=None, vmin=None, vmax=None, lightsource=None, **kwargs)
这个函数算是比较常用的函数,用于绘制三维表面图,让人惊艳的是它的着色效果。
Argument | Description |
X, Y,Z | 坐标点 |
rcount,ccount,rstride,cstride | 同上 |
color | 定义surface patch的颜色,type:color-like |
cmap | 定义surface patch的颜色,只不过是colorMap,type:colormap |
facecolors | 指定单个patch的颜色, type:array-like of colors |
norm | colormap的normalization, type:Normalize |
shade | 阴影效果,type:boolean |
vmin, vmax | normalization的边界 |
**kwargs | 向下传递到 |
antialiased | 抗锯齿,type:boolean |
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import numpy as np
fig = plt.figure()
ax = fig.gca(projection='3d')
# Make data.
X = np.arange(-5, 5, 0.25)
Y = np.arange(-5, 5, 0.25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X**2 + Y**2)
Z = np.sin(R)
# Plot the surface.
surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm,
linewidth=0, antialiased=False)
# Customize the z axis.
ax.set_zlim(-1.01, 1.01)
ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
# Add a color bar which maps values to colors.
fig.colorbar(surf, shrink=0.5, aspect=5)
plt.show()
ContourPlot
Axes3D.``contour
(X, Y, Z, *args, extend3d=False, stride=5, zdir=‘z’, offset=None, **kwargs)
Argument | Description |
X, Y,Z | Data values as numpy.arrays |
extend3d | 是否延申到3d空间 (default: False) |
*stride | (extend3d的)采样步长 |
zdir | 同上 |
offset | 绘制轮廓线在zdir垂直的水平面上的投影 |
其他位置、关键字参数向下传递到二维contour()函数
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
from matplotlib import cm
fig = plt.figure()
ax = fig.gca(projection='3d')
X, Y, Z = axes3d.get_test_data(0.05)
# Plot contour curves
cset = ax.contour(X, Y, Z, cmap=cm.coolwarm)
ax.clabel(cset, fontsize=9, inline=1) # function to label a contour
plt.show()
FilledContourPlot
-
Axes3D.``contourf
(X, Y, Z, *args, zdir=‘z’, offset=None, **kwargs)
Argument | Description |
X, Y,Z | Data values as numpy.arrays |
zdir | 同上 |
offset | 绘制轮廓线在zdir垂直的水平面上的投影 |
其他位置、关键字参数向下传递到二维contourf(),例子请参考上面的contour
PolygonPlot
Axes3D.``add_collection3d
(col, zs=0, zdir=‘z’)
这个函数挺有趣,但是我没有遇到过这种场景。它可以将三维 collection对象或二维collection对象加入到一个图形中,包括:
- PolyCollection
- LineCollection
- PatchCollection
from mpl_toolkits.mplot3d import Axes3D # noqa: F401 unused import
from matplotlib.collections import PolyCollection
import matplotlib.pyplot as plt
from matplotlib import colors as mcolors
import numpy as np
# Fixing random state for reproducibility
np.random.seed(19680801)
def cc(arg):
'''
Shorthand to convert 'named' colors to rgba format at 60% opacity.
'''
return mcolors.to_rgba(arg, alpha=0.6)
def polygon_under_graph(xlist, ylist):
'''
Construct the vertex list which defines the polygon filling the space under
the (xlist, ylist) line graph. Assumes the xs are in ascending order.
'''
return [(xlist[0], 0.), *zip(xlist, ylist), (xlist[-1], 0.)]
fig = plt.figure()
ax = fig.gca(projection='3d')
# Make verts a list, verts[i] will be a list of (x,y) pairs defining polygon i
verts = []
# Set up the x sequence
xs = np.linspace(0., 10., 26)
# The ith polygon will appear on the plane y = zs[i]
zs = range(4)
for i in zs:
ys = np.random.rand(len(xs))
verts.append(polygon_under_graph(xs, ys))
poly = PolyCollection(verts, facecolors=[cc('r'), cc('g'), cc('b'), cc('y')])
ax.add_collection3d(poly, zs=zs, zdir='y')
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
ax.set_xlim(0, 10)
ax.set_ylim(-1, 4)
ax.set_zlim(0, 1)
plt.show()
BarPlot
Axes3D.``bar
(left, height, zs=0, zdir=‘z’, *args, **kwargs)
其他参数向下传递给bar
函数,返回Patch3DCollection
对象
Argument | Description |
left | 条形图水平坐标 |
height | 条形的高度 |
zs | Z方向 |
zdir | 同上 |
from mpl_toolkits.mplot3d import Axes3D # noqa: F401 unused import
import matplotlib.pyplot as plt
import numpy as np
# Fixing random state for reproducibility
np.random.seed(19680801)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
colors = ['r', 'g', 'b', 'y']
yticks = [3, 2, 1, 0]
for c, k in zip(colors, yticks):
# Generate the random data for the y=k 'layer'.
xs = np.arange(20)
ys = np.random.rand(20)
# You can provide either a single color or an array with the same length as
# xs and ys. To demonstrate this, we color the first bar of each set cyan.
cs = [c] * len(xs)
# Plot the bar graph given by xs and ys on the plane y=k with 80% opacity.
ax.bar(xs, ys, zs=k, zdir='y', color=cs, alpha=0.8)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
# On the y axis let's only label the discrete values that we have data for.
ax.set_yticks(yticks)
plt.show()
Text
Axes3D.``text
(x, y, z, s, zdir=None, **kwargs)
text的内容其实也很繁杂,需要用一篇内容去探讨,在三维中很重要的一点是要学会二维、三维文字的添加。
from mpl_toolkits.mplot3d import Axes3D # noqa: F401 unused import
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.gca(projection='3d')
# Demo 1: zdir
zdirs = (None, 'x', 'y', 'z', (1, 1, 0), (1, 1, 1))
xs = (1, 4, 4, 9, 4, 1)
ys = (2, 5, 8, 10, 1, 2)
zs = (10, 3, 8, 9, 1, 8)
for zdir, x, y, z in zip(zdirs, xs, ys, zs):
label = '(%d, %d, %d), dir=%s' % (x, y, z, zdir)
ax.text(x, y, z, label, zdir)
# Demo 2: color
ax.text(9, 0, 0, "red", color='red')
# Demo 3: text2D
# Placement 0, 0 would be the bottom left, 1, 1 would be the top right.
ax.text2D(0.05, 0.95, "2D Text", transform=ax.transAxes)
# Tweaking display region and labels
ax.set_xlim(0, 10)
ax.set_ylim(0, 10)
ax.set_zlim(0, 10)
ax.set_xlabel('X axis')
ax.set_ylabel('Y axis')
ax.set_zlabel('Z axis')
plt.show()
写在篇后
三维绘图不是很常用,主要就是scatterPlot以及surfacePlot稍微更常用。