聊天机器人是什么

聊天机器人是目前非常热的一个基于自然语言交互的产品,基于自然语言的交互比基于图形的交互更高效时,以打车为例,用户说「叫车从公司回家,比打开APP输入起点终点再点击下单要更高效。在现有的人与人之间对话的场景下,也能帮助提高效率、降低成本,比如客服与用户之间的对话。

聊天机器人的类型

从聊天机器人的作用上分类,可以分为问答型机器人(限定领域),任务导向型机器人,闲聊型机器人(开放领域)

从聊天机器人技术而言,常见的几种主流技术包括:基于人工模板的聊天机器人、基于检索的聊天机器人、基于机器翻译技术的聊天机器人、基于深度学习的聊天机器人。

检索式 聊天机器人VS 基于统计的机器翻译机器人VS神经网络生成式聊天机器人

检索式聊天机器人指的事先存在一个对话库,对问答对建立索引,进行存储,存储方式通常式是倒排的,聊天系统接收到用户输入句子后,通过在对话库中以搜索匹配的方式进行应答内容提取。
很明显这种方式对对话库要求很高,需要对话库足够大,能够尽量多地匹配用户问句,否则会经常出现找不到合适回答内容的情形,因为在真实场景下用户说什么都是可能的,但是它的好处是回答质量高,因为对话库中的内容都是真实的对话数据,表达比较自然。

基于统计的机器翻译机器人,将源语言"翻译"成答复语句,通过对大量的平行语料进行统计分析,构建统计翻译模型(词汇、比对或是语言模式),进而使用此模型进行翻译,一般会选取统计中出现概率最高的词条作为翻译。

生成式聊天机器人则采取不同的技术思路,在接收到用户输入句子后,通过两个阶段Encoder-Decoder(或者称作是Sequence to Sequence)自动生成一句话作为应答, 相对基于检索类或者机器翻译类传统技术而言,基于Encoder-Decoder深度学习框架的聊天机器人具有如下明显优点:

  1. 构建过程是端到端(End-to-End)数据驱动的,只要给定训练数据即可训练出效果还不错的聊天系统,省去了很多特征抽取以及各种复杂中间步骤的处理,比如省去句法分析与语义分析等传统NLP绕不开的工作,使得系统开发效率大幅提高。
  2. 语言无关,可扩展性强。对于开发不同语言的聊天机器人来说,如果采用Encoder-Decoder技术框架,只需要使用不同语言的聊天数据进行训练即可,不需要专门针对某种语言做语言相关的特定优化措施,这使得系统可扩展性大大加强

但是缺点是生成应答句子质量很可能会存在问题,比如可能存在语句不通顺存在句法错误等看上去比较低级的错误。

高质量聊天机器人应该具备的特点

首先,针对用户的回答或者聊天内容,机器人产生的应答句应该和用户的问句语义一致并逻辑正确,如果聊天机器人答非所问或者不知所云,亦或老是回答说“对不起,我不理解您的意思”,对于聊天机器人来说无疑是毁灭性的用户体验。

其次,聊天机器人的回答应该是语法正确的。这个看似是基本要求,但是对于采用生成式对话技术的机器人来说其实要保证这一点是有一定困难的,因为机器人的回答是一个字一个字生成的,如何保证这种生成的若干个字是句法正确的其实并不容易做得那么完美。

再次,聊天机器人的应答应该是有趣的、多样性的而非沉闷无聊的。尽管有些应答看上去语义上没有什么问题,但是目前技术训练出的聊天机器人很容易产生“安全回答”的问题,就是说,不论用户输入什么句子,聊天机器人总是回答“好啊”、“是吗”等诸如此类看上去语义说得过去,但是这给人很无聊的感觉。

还有,聊天机器人应该给人“个性表达一致”的感觉。因为人们和聊天机器人交流,从内心习惯还是将沟通对象想象成一个人,而一个人应该有相对一致的个性特征,如果用户连续问两次“你多大了”,而聊天机器人分别给出不同的岁数,那么会给人交流对象精神分裂的印象,这即是典型的个性表达不一致。而好的聊天机器人应该对外体现出各种基本背景信息以及爱好、语言风格等方面一致的回答。

深度学习构建聊天机器人

如上所述,目前对于开放领域生成式聊天机器人技术而言,多数技术采用了Encoder-Decoder框架,所以先描述Encoder-Decoder框架技术原理。然后分别针对聊天机器人研究领域需要特殊考虑的主要问题及其对应的解决方案进行讲解,这些主要问题分别是:多轮会话中的上下文机制问题、“安全回答”问题以及个性信息一致性问题。

Encoder-Decoder框架可以看作是一种文本处理领域的研究模式,应用场景异常广泛,不仅仅可以用在对话机器人领域,还可以应用在机器翻译、文本摘要、句法分析等各种场合。下图是文本处理领域里常用的Encoder-Decoder框架最抽象的一种表示:

聊天机器人架构 聊天机器人_聊天机器人

Encoder-Decoder框架可以如此直观地去理解:可以把它看作适合处理由一个句子(或篇章)生成另外一个句子(或篇章)的通用处理模型。对于句子对,我们的目标是给定输入句子X,期待通过Encoder-Decoder框架来生成目标句子Y。X和Y可以是同一种语言,也可以是两种不同的语言。而X和Y分别由各自的单词序列构成:

聊天机器人架构 聊天机器人_神经网络_02

Encoder顾名思义就是对输入句子X进行编码,将输入句子通过非线性变换转化为中间语义表示C:

聊天机器人架构 聊天机器人_深度学习_03

对于解码器Decoder来说,其任务是根据句子X的中间语义表示C和之前已经生成的历史信息来生成i时刻要生成的单词yi:

聊天机器人架构 聊天机器人_深度学习_04

每个yi都依次这么产生,那么看起来就是整个系统根据输入句子X生成了目标句子Y。

对于聊天机器人来说,完全可以使用上述的Encoder-Decoder框架来解决技术问题。具体而言,对应的中,X指的是用户输入语句,一般称作源语言,而Y一般指的是聊天机器人的应答语句,一般称作目标语言。其含义是当用户输入源语言后,经过Encoder-Decoder框架计算,首先由Encoder对源语言进行语义编码,形成中间语义表示C,Decoder根据中间语义表示C生成了聊天机器人的应答目标语言。这样,用户反复输入不同的源语言,聊天机器人每次都形成新的应答目标语言,形成了一个实际的对话系统。

在实际实现聊天系统的时候,一般Encoder和Decoder都采用RNN模型,RNN模型对于文本这种线性序列来说是最常用的深度学习模型,RNN面对长序列时可能会出现梯度消失或者梯度爆炸等情况,RNN的改进模型LSTM以及GRU模型也是经常使用的模型。

多轮会话中的上下文问题

Encoder-Decoder框架可以根据用户当前输入源语言,聊天机器人自动生成应答目标语言,形成了一个有效的对话系统。但是一般人们聊天并不是单纯的一问一答,在回答的时候到底说什么内容常常要参考上下文Context信息,所谓对话上下文Context,也就是在用户当前输入问句之前两者的对话信息,因为存在多轮的一问一答,这种情形一般称为多轮会话。在多轮会话中,一般将上下文称作Context。

深度学习来解决多轮会话的关键是如何将上下文聊天信息Context引入到Encoder-Decoder模型中去的问题。很明显,上下文聊天信息Context应该引入到Encoder中,因为这是除了当前输入文本外的额外信息,有助于Decoder生成更好的会话应答内容。目前不同的研究主体思路都是这样的,无非在如何将Context信息在Encoder端建立模型或者说具体的融入模型有些不同而已。

很容易想到一种直观地将Context信息融入Encoder的思路:无上下文信息的Encoder-Decoder模型的输入仅仅包含Message,只需要把上下文信息Context和输入信息拼接起来形成一个长的输入提供给Encoder,这样就把上下文信息融入模型中了。

这个直觉本身其实是没有什么问题的,但是对于采用RNN模型的Encoder来说会存在如下问题:因为输入是历史上下文Context加上当前输入文本构成的,有时候输入会非常长,而众所周知,对于RNN模型来说,如果输入的线型序列长度越长,模型效果越差。所以这样简单地拼接Context和输入文本的策略明显不会产生太好的聊天效果。

聊天机器人架构 聊天机器人_神经网络_05

考虑到RNN对长度敏感的问题,对聊天机器人场景优化的Encoder-Decoder模型,核心思想是将Encoder用多层前向神经网络来代替RNN模型,神经网络的输出代表上下文信息Context和当前输入文本的中间语义表示,而Decoder依据这个中间表示来生成对话应答。

这样做既能够将上下文信息Context和当前输入语句通过多层前向神经网络编码成Encoder-Decoder模型的中间语义表达,又避免了RNN对于过长输入敏感的问题。在前向神经网络的第一层分别对其进行编码,拼接结果作为深层网络后续隐层的输入

聊天机器人架构 聊天机器人_聊天机器人架构_06

当然,除了Encoder从RNN替换为深层前向神经网络外,与传统Encoder-Decoder还有一个显著区别,就是Decoder的RNN模型每个时刻t在输出当前字符的时候,不仅仅依赖t-1时刻的隐层状态和当前输入,还显示地将Encoder的中间语义编码直接作为t时刻RNN节点的输入,而不是像经典Encoder-Decoder模型那样把中间语义编码当做Decoder中RNN的最初输入。其出发点其实也是很直观的,就是在生成每个输出字符的时候反复强化中间语义编码的作用,这对于输出应答较长的时候无疑是有帮助作用的。

解决多轮会话上下文问题的另外一种思路,被称作层级神经网络(Hierarchical Neural Network,简称HNN)。HNN本质上也是Encoder-Decoder框架,主要区别在于Encoder采用了二级结构,上下文Context中每个句子首先用“句子RNN(Sentence RNN)”对每个单词进行编码形成每个句子的中间表示,而第二级的RNN则将第一级句子RNN的中间表示结果按照上下文中句子出现先后顺序序列进行编码,这级RNN模型可被称作“上下文RNN(Context RNN)”,其尾节点处隐层节点状态信息就是所有上下文Context以及当前输入的语义编码,以这个信息作为Decoder产生每个单词的输入之一,这样就可以在生成应答Response的单词时把上下文信息考虑进来。

聊天机器人架构 聊天机器人_深度学习_07

如何解决“安全回答”(Safe Response)问题

如果采用经典的Encoder-Decoder模型构建开放领域生成式聊天机器人系统,一个比较容易产生的严重问题就是“安全回答”问题。

什么是安全回答问题呢?就是说不论用户说什么内容,聊天机器人都用少数非常常见的句子进行应答,比如英文的“I don’t know”、“Come on”、“I’m OK”,中文的“是吗”、“呵呵”等。虽然说在很多种情况下这么回答也不能说是错误的,但是可以想象,如果用户遇到这样一位聊天对象会有多抓狂。这个现象产生的主要原因是聊天训练数据中确实很多回答都是这种宽泛但是无意义的应答,所以通过Encoder-Decoder模型机器人学会这种常见应答模式。如何解决聊天机器人“安全回答”问题,让机器产生多样化的应答是个很重要的课题。

在Sequence-to-Sequence框架下来解决“安全回答”问题。在聊天场景下,传统的使用Sequence-to-Sequence框架来进行模型训练时,其优化目标基本上是最大似然法(MLE),就是说给定用户输入Message,通过训练来最大化生成应答Response的概率:

聊天机器人架构 聊天机器人_神经网络_08

其中M代表message,R代表Response;

改进的优化目标函数:最大化互信息(MMI),其目标函数如下:

聊天机器人架构 聊天机器人_深度学习_09

可以从公式差异中看出,MMI的优化目标除了最大化从输入文本生成应答语句的概率,同时加入了反向优化目标,即最大化应答语句产生输入文本的概率,其中lamda是控制两者哪个更重要的调节超参数。通过其名字“互信息”以及具体公式可以看出,这个优化目标函数要求应答和输入文本内容密切相关而不仅仅是考虑哪个应答语句更高概率出现,所以降低了那些非常常见的回答的生成概率,使得应答更多样化且跟输入文本语义更相关。

采用MMI作为目标函数明显解决了很多“安全回答”问题,表一是两个不同优化目标函数产生的应答的示例,其中输入文本列代表用户输入语句,S2S 应答代表MLE优化目标产生的应答,MMI 应答代表MMI优化目标产生的应答。

个性信息一致性问题

对于聊天助手等应用来说,聊天机器人往往会被用户当做一个具有个性化特性的虚拟人,比如经常会问:“你多大了”、“你的爱好是什么”、“你是哪里人啊”等。如果将聊天助手当做一个虚拟人,那么这位虚拟人相关的个性化信息比如年龄、性别、爱好、语言风格等个性特征信息应该维护回答的一致性。利用经典的Sequence-to-Sequence模型训练出的聊天助手往往很难保持这种个性信息的一致性,这是因为Sequence-to-Sequence模型训练的都是单句Message对单句Response的映射关系,内在并没有统一维护聊天助手个性信息的场所,所以并不能保证每次相同的问题能够产生完全相同的应答。另外,对于海量用户来说,可能不同的用户会喜欢不同聊天风格或者不同身份的聊天助手,所以聊天机器人应该能够提供不同身份和个性信息的聊天助手,不同类型用户可以采用相应类型的聊天助理来聊天,当然,在聊天过程中要尽量保持身份和个性信息的一致性。

聊天机器人架构 聊天机器人_聊天机器人_10

其基本思路如下:聊天机器人系统可以定义不同身份和个性及语言风格的聊天助理身份,个性化信息通过Word Embedding的表达方式来体现,在维护聊天助手个性或身份一致性的时候,可以根据聊天对象的风格选择某种风格身份的聊天助手。整体技术框架仍然采用Sequence-to-Sequence架构,其基本思路是把聊天助手的个性信息导入到Decoder的输出过程中,就是说在采用RNN的Decoder生成应答Response的时候,每个t时刻,神经网络节点除了RNN标准的输入外,也将选定身份的个性化Word Embedding信息一并作为输入。这样就可以引导系统在输出时倾向于输出符合身份特征的个性化信息。

上述是一种深度学习框架下维护聊天助手个性一致性的技术框架,很明显还可以衍生出很多种其它方案,但是其技术思路应该是类似的,核心思想是把聊天助手的个性信息在Decoder阶段能够体现出来,以此达到维护个性一致性的目的。

上述内容介绍了使用深度学习构建聊天机器人采用的主体技术框架以及面临的一些独特问题及相应的解决方案,除此外,还有一些问题值得探讨,比如如何使得聊天机器人有主动引导话题的能力,因为一般聊天机器人都比较被动,话题往往都是由用户发起和引导,聊天机器人只是作为应答方,很少主动引导新话题,而这很容易导致聊天冷场,所以如何主动引导话题也是聊天机器人应该具备的能力之一,

参考链接:https://www.jianshu.com/p/110622276c34