需求描述:

现在有一个文件,包含若干个字段(时间戳,手机号,...,上行流量,下行流量等),字段间以“\t“,分隔,数据格式如下,现在要统计出所有手机号的上行/下行流量总和。

输入:

时间戳 手机号  ... 上行流量  下行流量


输出:

手机号  总上行流量  总下行流量 总流量


思路:

框架传递给Map的数据是文件中的一行数据,首先将行切分成字符串数组,提取出要用的字段,然后输出kv对<手机号,FlowBean>

这里我们需要封装一个Bean,用于表示手机号对应的上行流量和下行流量。

由于FlowBean是我们自己定义的类,它要自Hadoop不同节点间传输的话,就需要符合Hadoop的序列化规范,因此FlowBean需要实现Writable接口,用于序列化,以便于在集群的不同节点间传输Bean对象。

Hadoop自己实现了一套序列化机制,不同于jdk中自带的序列化机制的是,Hadoop中的序列化机制不会保存对象的继承结构,这样就会提高传输效率。

在反序列化的时候,会先调用Bean的空参构造方法反射出一个对象,然后在给对象的字段赋值。

Reduce从框架接收到形如<k,{flowbean,flowbean,flowbean...}>(一个k对应一个手机号),需要对values遍历累加求和,然后输出

另外,Reduce阶段输出数据给框架,框架写结果文件的时候,需要调用Bean的toString()方法,因此默认的toString()方法返回对象的id在这里并不适合,需要重新覆盖Bean的toString()方法,以便得到想要的结果。


具体代码如下:

依次定义4个类,FlowBean,FlowSumMapper,FlowSumMapper,FlowSumRunner

然后按照指定的逻辑实现即可。


FlowBean

package com.gege.hadoop.mr.flowsum;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableComparable;

public class FlowBean implements WritableComparable<FlowBean>{
	
	
	private String phoneNB;
	private long up_flow;
	private long d_flow;
	private long s_flow;
	
	//在反序列化时,反射机制需要调用空参构造函数,所以显示定义了一个空参构造函数
	public FlowBean(){}
	
	//为了对象数据的初始化方便,加入一个带参的构造函数
	public FlowBean(String phoneNB, long up_flow, long d_flow) {
		this.phoneNB = phoneNB;
		this.up_flow = up_flow;
		this.d_flow = d_flow;
		this.s_flow = up_flow + d_flow;
	}

	public String getPhoneNB() {
		return phoneNB;
	}

	public void setPhoneNB(String phoneNB) {
		this.phoneNB = phoneNB;
	}

	public long getUp_flow() {
		return up_flow;
	}

	public void setUp_flow(long up_flow) {
		this.up_flow = up_flow;
	}

	public long getD_flow() {
		return d_flow;
	}

	public void setD_flow(long d_flow) {
		this.d_flow = d_flow;
	}

	public long getS_flow() {
		return s_flow;
	}

	public void setS_flow(long s_flow) {
		this.s_flow = s_flow;
	}

	
	
	//将对象数据序列化到流中
	@Override
	public void write(DataOutput out) throws IOException {

		out.writeUTF(phoneNB);
		out.writeLong(up_flow);
		out.writeLong(d_flow);
		out.writeLong(s_flow);
		
	}

	
	//从数据流中反序列出对象的数据
	//从数据流中读出对象字段时,必须跟序列化时的顺序保持一致
	@Override
	public void readFields(DataInput in) throws IOException {

		phoneNB = in.readUTF();
		up_flow = in.readLong();
		d_flow = in.readLong();
		s_flow = in.readLong();
		
	}
	
	
	@Override
	public String toString() {

		return "" + up_flow + "\t" +d_flow + "\t" + s_flow;
	}

	@Override
	public int compareTo(FlowBean o) {
		return s_flow>o.getS_flow()?-1:1;
	}
	

}



FlowSumMapper

package com.gege.hadoop.mr.flowsum;

import java.io.IOException;

import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;


/**
 * FlowBean 是我们自定义的一种数据类型,要在hadoop的各个节点之间传输,应该遵循hadoop的序列化机制
 * 就必须实现hadoop相应的序列化接口
 *
 */
public class FlowSumMapper extends Mapper<LongWritable, Text, Text, FlowBean>{

	
	//拿到日志中的一行数据,切分各个字段,抽取出我们需要的字段:手机号,上行流量,下行流量,然后封装成kv发送出去
	@Override
	protected void map(LongWritable key, Text value,Context context)
			throws IOException, InterruptedException {

		//拿一行数据
		String line = value.toString();
		//切分成各个字段
		String[] fields = StringUtils.split(line, "\t");
		
		//拿到我们需要的字段
		String phoneNB = fields[1];
		long u_flow = Long.parseLong(fields[7]);
		long d_flow = Long.parseLong(fields[8]);
		
		//封装数据为kv并输出
		context.write(new Text(phoneNB), new FlowBean(phoneNB,u_flow,d_flow));
		
	}
	
	
}

FlowSumReducer

package com.gege.hadoop.mr.flowsum;

import java.io.IOException;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class FlowSumReducer extends Reducer<Text, FlowBean, Text, FlowBean>{
	
	
	//框架每传递一组数据<1387788654,{flowbean,flowbean,flowbean,flowbean.....}>调用一次我们的reduce方法
	//reduce中的业务逻辑就是遍历values,然后进行累加求和再输出
	@Override
	protected void reduce(Text key, Iterable<FlowBean> values,Context context)
			throws IOException, InterruptedException {

		long up_flow_counter = 0;
		long d_flow_counter = 0;
		
		for(FlowBean bean : values){
			
			up_flow_counter += bean.getUp_flow();
			d_flow_counter += bean.getD_flow();
			
		}
		
		
		context.write(key, new FlowBean(key.toString(), up_flow_counter, d_flow_counter));
		
		
	}

}



FlowSumRunner

package com.gege.hadoop.mr.flowsum;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputFormat;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.OutputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

//这是job描述和提交类的规范写法
public class FlowSumRunner extends Configured implements Tool{

	@Override
	public int run(String[] args) throws Exception {
		
		Configuration conf = new Configuration();	
		Job job = Job.getInstance(conf);
		
		job.setJarByClass(FlowSumRunner.class);
		
		job.setMapperClass(FlowSumMapper.class);
		job.setReducerClass(FlowSumReducer.class);
		
		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(FlowBean.class);
		
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(FlowBean.class);
		
		FileInputFormat.setInputPaths(job, new Path(args[0]));
		FileOutputFormat.setOutputPath(job, new Path(args[1]));
		
		
		return job.waitForCompletion(true)?0:1;
	}
	
	
	public static void main(String[] args) throws Exception {
		int res = ToolRunner.run(new Configuration(), new FlowSumRunner(), args);
		System.exit(res);
	}

}




执行逻辑:

待上传