CDH下配置Flume进行日志采集配置
说明:许多企业目前都在使用CDH进行大数据开发,CDH具有方便,高效,一键配置,方便管理和搭建大数据组件的特点,所以下面说一下尚硅谷的Flume配合Kafka进行日志文件的采集。
架构图
下图蓝框内为采集架构图,由架构图得到数据是以Flume --> kafka --> Flume --> HDFS进行采集的,可以看到使用了两次Flume
第一层Flume架构及配置
这一块的source是TAILDIR,channel是memory,sink是kafka,这一块用到了拦截器,拦截器的作用是将日志文件分为两个部分,一个部分就是启动日志start,一个是时间日志event,通过拦截器的筛选则会将日志文件筛选出这两部分存放在kafka的topic,前提要将kafka的topic建立好,topic_start,topic_event,此部分省略
注:flume采用的压缩为LZO,不知道如何让在CDH下配置LZO的请看我的这篇文章:CDH下LZO的配置
问:Flume的代码一定要这样放在CDH中吗
答:当然不是,这样写的好处是CDH启动后就会一直监测日志文件,只要生成日志文件就会进行传输,不这样写,按照普通配置文件也可以使用,flume-ng agent -c conf/ -n a1 -f /配置路径/f1.conf -Dflume.root.logger=DEBUG,consol
拦截器放在/opt/cloudera/parcels/CDH/lib/flume-ng/lib/
拦截器代码如下,jar包下载链接在下,可以配合Flume直接用
拦截器代码
本项目中自定义了两个拦截器,分别是:ETL拦截器、日志类型区分拦截器。
ETL拦截器主要用于,过滤时间戳不合法和Json数据不完整的日志
日志类型区分拦截器主要用于,将启动日志和事件日志区分开来,方便发往Kafka的不同Topic。
1)创建Maven工程flume-interceptor
2)创建包名:com.atguigu.flume.interceptor
3)在pom.xml文件中添加如下配置
<dependencies>
<dependency>
<groupId>org.apache.flume</groupId>
<artifactId>flume-ng-core</artifactId>
<version>1.7.0</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<version>2.3.2</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
4)在com.atguigu.flume.interceptor包下创建LogETLInterceptor类名
Flume ETL拦截器LogETLInterceptor
package com.atguigu.flume.interceptor;
import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.interceptor.Interceptor;
import java.nio.charset.Charset;
import java.util.ArrayList;
import java.util.List;
public class LogETLInterceptor implements Interceptor {
@Override
public void initialize() {
}
@Override
public Event intercept(Event event) {
// 1 获取数据
byte[] body = event.getBody();
String log = new String(body, Charset.forName("UTF-8"));
// 2 判断数据类型并向Header中赋值
if (log.contains("start")) {
if (LogUtils.validateStart(log)){
return event;
}
}else {
if (LogUtils.validateEvent(log)){
return event;
}
}
// 3 返回校验结果
return null;
}
@Override
public List<Event> intercept(List<Event> events) {
ArrayList<Event> interceptors = new ArrayList<>();
for (Event event : events) {
Event intercept1 = intercept(event);
if (intercept1 != null){
interceptors.add(intercept1);
}
}
return interceptors;
}
@Override
public void close() {
}
public static class Builder implements Interceptor.Builder{
@Override
public Interceptor build() {
return new LogETLInterceptor();
}
@Override
public void configure(Context context) {
}
}
}
4)Flume日志过滤工具类
package com.atguigu.flume.interceptor;
import org.apache.commons.lang.math.NumberUtils;
public class LogUtils {
public static boolean validateEvent(String log) {
// 服务器时间 | json
// 1549696569054 | {"cm":{"ln":"-89.2","sv":"V2.0.4","os":"8.2.0","g":"M67B4QYU@gmail.com","nw":"4G","l":"en","vc":"18","hw":"1080*1920","ar":"MX","uid":"u8678","t":"1549679122062","la":"-27.4","md":"sumsung-12","vn":"1.1.3","ba":"Sumsung","sr":"Y"},"ap":"weather","et":[]}
// 1 切割
String[] logContents = log.split("\\|");
// 2 校验
if(logContents.length != 2){
return false;
}
//3 校验服务器时间
if (logContents[0].length()!=13 || !NumberUtils.isDigits(logContents[0])){
return false;
}
// 4 校验json
if (!logContents[1].trim().startsWith("{") || !logContents[1].trim().endsWith("}")){
return false;
}
return true;
}
public static boolean validateStart(String log) {
if (log == null){
return false;
}
// 校验json
if (!log.trim().startsWith("{") || !log.trim().endsWith("}")){
return false;
}
return true;
}
}
5)Flume日志类型区分拦截器LogTypeInterceptor
package com.atguigu.flume.interceptor;
import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.interceptor.Interceptor;
import java.nio.charset.Charset;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
public class LogTypeInterceptor implements Interceptor {
@Override
public void initialize() {
}
@Override
public Event intercept(Event event) {
// 区分日志类型: body header
// 1 获取body数据
byte[] body = event.getBody();
String log = new String(body, Charset.forName("UTF-8"));
// 2 获取header
Map<String, String> headers = event.getHeaders();
// 3 判断数据类型并向Header中赋值
if (log.contains("start")) {
headers.put("topic","topic_start");
}else {
headers.put("topic","topic_event");
}
return event;
}
@Override
public List<Event> intercept(List<Event> events) {
ArrayList<Event> interceptors = new ArrayList<>();
for (Event event : events) {
Event intercept1 = intercept(event);
interceptors.add(intercept1);
}
return interceptors;
}
@Override
public void close() {
}
public static class Builder implements Interceptor.Builder{
@Override
public Interceptor build() {
return new LogTypeInterceptor();
}
@Override
public void configure(Context context) {
}
}
}
6)jar包链接 提取码:6wz8
Flume1代码
a1.sources=r1
a1.channels=c1 c2
a1.sinks=k1 k2
# configure source
a1.sources.r1.type = TAILDIR
a1.sources.r1.filegroups = f1
a1.sources.r1.filegroups.f1 = /tmp/logs/app.+
a1.sources.r1.fileHeader = true
a1.sources.r1.channels = c1 c2
#interceptor
a1.sources.r1.interceptors = i1 i2
a1.sources.r1.interceptors.i1.type = com.atguigu.flume.interceptor.LogETLInterceptor$Builder
a1.sources.r1.interceptors.i2.type = com.atguigu.flume.interceptor.LogTypeInterceptor$Builder
# selector
a1.sources.r1.selector.type = multiplexing
a1.sources.r1.selector.header = topic
a1.sources.r1.selector.mapping.topic_start = c1
a1.sources.r1.selector.mapping.topic_event = c2
# configure channel
a1.channels.c1.type = memory
a1.channels.c1.capacity=10000
a1.channels.c1.byteCapacityBufferPercentage=20
a1.channels.c2.type = memory
a1.channels.c2.capacity=10000
a1.channels.c2.byteCapacityBufferPercentage=20
# configure sink
# start-sink
a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k1.kafka.topic = topic_start
a1.sinks.k1.kafka.bootstrap.servers = hadoop102:9092,hadoop103:9092,hadoop104:9092
a1.sinks.k1.kafka.flumeBatchSize = 2000
a1.sinks.k1.kafka.producer.acks = 1
a1.sinks.k1.channel = c1
# event-sink
a1.sinks.k2.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k2.kafka.topic = topic_event
a1.sinks.k2.kafka.bootstrap.servers = hadoop102:9092,hadoop103:9092,hadoop104:9092
a1.sinks.k2.kafka.flumeBatchSize = 2000
a1.sinks.k2.kafka.producer.acks = 1
a1.sinks.k2.channel = c2
Flume2代码(放在第二个flume的节点上)
Flume2架构图
## 组件
a1.sources=r1 r2
a1.channels=c1 c2
a1.sinks=k1 k2
## source1
a1.sources.r1.type = org.apache.flume.source.kafka.KafkaSource
a1.sources.r1.batchSize = 5000
a1.sources.r1.batchDurationMillis = 2000
a1.sources.r1.kafka.bootstrap.servers = hadoop102:9092,hadoop103:9092,hadoop104:9092
a1.sources.r1.kafka.topics=topic_start
## source2
a1.sources.r2.type = org.apache.flume.source.kafka.KafkaSource
a1.sources.r2.batchSize = 5000
a1.sources.r2.batchDurationMillis = 2000
a1.sources.r2.kafka.bootstrap.servers = hadoop102:9092,hadoop103:9092,hadoop104:9092
a1.sources.r2.kafka.topics=topic_event
## channel1
a1.channels.c1.type=memory
a1.channels.c1.capacity=100000
a1.channels.c1.transactionCapacity=10000
## channel2
a1.channels.c2.type=memory
a1.channels.c2.capacity=100000
a1.channels.c2.transactionCapacity=10000
## sink1
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.proxyUser=hive
a1.sinks.k1.hdfs.path = /origin_data/gmall/log/topic_start/%Y-%m-%d
a1.sinks.k1.hdfs.filePrefix = logstart-
a1.sinks.k1.hdfs.round = true
a1.sinks.k1.hdfs.roundValue = 10
a1.sinks.k1.hdfs.roundUnit = second
##sink2
a1.sinks.k2.type = hdfs
a1.sinks.k2.hdfs.proxyUser=hive
a1.sinks.k2.hdfs.path = /origin_data/gmall/log/topic_event/%Y-%m-%d
a1.sinks.k2.hdfs.filePrefix = logevent-
a1.sinks.k2.hdfs.round = true
a1.sinks.k2.hdfs.roundValue = 10
a1.sinks.k2.hdfs.roundUnit = second
## 不要产生大量小文件
a1.sinks.k1.hdfs.rollInterval = 10
a1.sinks.k1.hdfs.rollSize = 134217728
a1.sinks.k1.hdfs.rollCount = 0
a1.sinks.k2.hdfs.rollInterval = 10
a1.sinks.k2.hdfs.rollSize = 134217728
a1.sinks.k2.hdfs.rollCount = 0
## 控制输出文件是原生文件。
a1.sinks.k1.hdfs.fileType = CompressedStream
a1.sinks.k2.hdfs.fileType = CompressedStream
a1.sinks.k1.hdfs.codeC = lzop
a1.sinks.k2.hdfs.codeC = lzop
## 拼装
a1.sources.r1.channels = c1
a1.sinks.k1.channel= c1
a1.sources.r2.channels = c2
a1.sinks.k2.channel= c2
在HDFS上进行文件创建:
udo -u hdfs hadoop fs -mkdir /origin_data
sudo -u hdfs hadoop fs -chown hive:hive /origin_data
体贴的我还给你们把日志生成jar包提供了,点个赞可以不~
链接:https://pan.baidu.com/s/1Lf7KTF6tvGmmZdr0Hbfv6w
提取码:jjgu
复制这段内容后打开百度网盘手机App,操作更方便哦–来自百度网盘超级会员V3的分享
重启Flume,然后再生成日志文件就可以看到文件出现了,注意修改你的ip地址就可以了