数学原理

在数字信号处理中,相关(correlation)可以分为互相关(cross correlation)和自相关(auto-correlation). 互相关是两个数字序列之间的运算;自相关是单个数字序列本身的运算,可以看成是两个相同数字序列的互相关运算.互相关用来度量一个数字序列移位后,与另一个数字序列的相似程度.其数学公式如下:

python 信号signal收发 python数字信号处理_卷积

其中,f和 g 为数字序列,n 为移位的位数,f*表示f 序列值的复数共轭,即复数的实部不变,虚部取反.

而卷积(convolution)与互相关运算相似,定义为将其中一个序列反转并移位后,两个序列的乘积的积分(求和),其数学公式如下:

python 信号signal收发 python数字信号处理_python 信号signal收发_02

其中,f和 g 为数字序列,n 为移位的位数.

在实数范围内,f 的复数共轭 f*=f .此时,通过比较上面两式可知:序列 f 与将序列 g 反转后的序列的卷积为序列 f 与序列 g 的互相关

Python 实现

采用两种方式实现:自定义互相关函数和直接调用 numpy.correlate 或 numpy.convolve.

在 numpy 中, numpy.correlate 函数实现两个一维数组的互相关操作;numpy.convolve 实现了两个一维数组的卷积操作.其中定义了三种模式('valid', 'same','full').
设两个序列长度分别为 M 和 N,则
'valid' 模式:输出长度为 max(M,N)-min(M,N)+1.只返回两个序列完全重合部分的点的卷积或相关运算;
'same' 模式:输出长度为两个序列中的较长者,即 max(M,N);
'full' 模式:输出长度为 M+N-1, 返回所有包含重叠部分的点.
互相关或卷积,实际上,就是计算两个序列(一维数组)在不同移位情况下,两个序列逐位相乘之后,求和的结果.不同模式只是返回互相关或卷积结果的不同部分.
注:如果在超出数组的索引范围,用 0 填充.
下面代码,采用自定义函数 correlate_func (只适用于实数值) 实现 numpy.correlate 和 numpy.convolve 的三种模式,并进行测试.
#!//usr/bin/env python#-*- coding: utf8 -*-
"""# Author: klchang
# Description: correlation or convolution of one-dimensional array with real numbers.
# Date: 2018.11"""
from __future__ importprint_functionimportnumpy as npdef correlate_func(a, b, mode='valid', conv=True):'''correlation or convolution in 1-d array with real numbers'''
if a is None or b isNone:returnNoneif len(a) > len(b):#Ensure the length of a is no longer than that of b.
returncorrelate_func(b, a, mode)#Convert to np.array type
a, b =list(map(np.array, [a, b]))if conv: a = a[::-1] #if convolution is true, reverse the shorter
res =[]
min_len, max_len=len(a), len(b)if mode == 'valid':
output_length= max_len - min_len + 1tmp=belif mode == 'same':
output_length=max_len
tmp= np.hstack((np.zeros(min_len-1), b))elif mode == 'full':
output_length= max_len + min_len - 1tmp= np.hstack((np.zeros(min_len-1), b, np.zeros(min_len-1)))else:raise Exception("No such mode {}!".format(mode))#For each point, get the total sum of element-wise multiplication
for i inrange(output_length):
val= np.sum(a * tmp[i:min_len+i])
res.append(val)return np.array(res, dtype=a.dtype)deftest():
a= [1, 2, 3]
b= [1, 2]
names= ['numpy.correlate', 'correlate_func', 'numpy.convolve', 'correlate_func(convolution)']
funcs= [np.correlate, correlate_func, np.convolve, lambda *args: correlate_func(*args, conv=True)]for i, (name, func) in enumerate(zip(names, funcs)[:4]):print ('-----' * 30 if i & 0x01 == 0 else '')print ("{} output result:".format(name))print ('valid mode:', func(a, b, 'valid'))print ('same mode:', func(a, b, 'same'))print ('full mode:', func(a, b, 'full'))if __name__ == '__main__':
test()
除此之外,在 matplotlib.pyplot 模块中,实现了用于可视化的自相关函数 matplotlib.pyplot.acorr 和互相关函数 matplotlib.pyplot.xcorr, 官方网址提供的一个示例代码如下:
importmatplotlib.pyplot as pltimportnumpy as np
np.random.seed(0)
x, y= np.random.randn(2, 100)
fig=plt.figure()
ax1= fig.add_subplot(211)
ax1.xcorr(x, y, usevlines=True, maxlags=50, normed=True, lw=2)
ax1.grid(True)
ax1.axhline(0, color='black', lw=2)
ax2= fig.add_subplot(212, sharex=ax1)
ax2.acorr(x, usevlines=True, normed=True, maxlags=50, lw=2)
ax2.grid(True)
ax2.axhline(0, color='black', lw=2)
plt.show()

参考资料

[1] Cross-correlation - Wikipedia. https://en.wikipedia.org/wiki/Cross-correlation

[2] Convolution - Wikipedia. https://en.wikipedia.org/wiki/Convolution

[3] Python: Interpretation on XCORR. https://stackoverflow.com/questions/24396589/python-interpretation-on-xcorr

[4] numpy.correlate -Numpy Reference. https://docs.scipy.org/doc/numpy/reference/generated/numpy.correlate.html

[5] numpy.convolve - Numpy Reference. https://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html#numpy.convolve