hks_crypto_ed25519.c代码分析
一、背景知识
二、代码分析
定义相关变量,定义公钥和私钥的字节数
#define CRYPTO_SUCCESS 1 //存放返回值表示加密成功
#define ED25519_PRIVATE_KEY_LEN 32 //私钥字节数32
#define ED25519_PUBLIC_KEY_LEN 32 //公钥字节数32
密钥信息保存
实现公钥私钥数据的复制保存。
参数详解:
- pubKey:传入存放公钥数据的结构体
- prikey:传入存放私钥数据的结构体
- keyout:存放最后整合的结果
//保存密钥内容和相关信息
static int32_t SaveEd25519KeyMaterial(const struct HksBlob *pubKey, const struct HksBlob *priKey,
struct HksBlob *keyOut)
{
uint32_t totalSize = sizeof(struct KeyMaterial25519) + pubKey->size + priKey->size;
//定义totalsize = 公钥长度加私钥长度加KeyMaterial25519结构体长度
uint8_t *buffer = (uint8_t *)HksMalloc(totalSize);
//申请一个tatalsize大小的缓冲区
if (buffer == NULL) {
return HKS_ERROR_MALLOC_FAIL;
}
struct KeyMaterial25519 *keyMaterial = (struct KeyMaterial25519 *)buffer;
keyMaterial->keyAlg = HKS_ALG_ED25519;
keyMaterial->keySize = HKS_CURVE25519_KEY_SIZE_256;
keyMaterial->pubKeySize = pubKey->size;
keyMaterial->priKeySize = priKey->size;
//将公钥和私钥长度写进刚申请的结构体变量
keyMaterial->reserved = 0;
uint32_t offset = sizeof(struct KeyMaterial25519);
if (memcpy_s(buffer + offset, pubKey->size, pubKey->data, pubKey->size) != EOK) {
//将公钥内容写进buffer,偏置offset
HKS_LOG_E("copy ed25519 public key failed");
(void)memset_s(buffer, totalSize, 0, totalSize);
//写入失败则初始化buffer内容然后释放空间
HKS_FREE_PTR(buffer);
return HKS_ERROR_BAD_STATE;
}
offset += pubKey->size;
//将偏执变量往后移动公钥字节长度,可以当作一个游标用老切分数组
if (memcpy_s(buffer + offset, priKey->size, priKey->data, priKey->size) != EOK) {
//将私钥内容写进buffer缓冲区,以offset为偏置
HKS_LOG_E("copy ed25519 private key failed");
(void)memset_s(buffer, totalSize, 0, totalSize);
HKS_FREE_PTR(buffer);
//写入失败就初始化buffer,然后释放内存
return HKS_ERROR_BAD_STATE;
}
keyOut->data = buffer;
keyOut->size = totalSize;
//最后将buffer关联在keyout.data,tatalsize赋值在keyout.size上,函数结束
return HKS_SUCCESS;
}
检查是否全0
//检查key的数据域是否为全零
static bool IsBlobZero(const struct HksBlob *key)
{
for (uint32_t i = 0; i < key->size; ++i) {
if (key->data[i] != 0) {
return false;
}
}
return true;
}
实现私钥公钥的生成
使用随机数生成私钥,基于私钥计算得到公钥数据。
//生成密钥
int32_t HksEd25519GenerateKey(struct HksBlob *keyOut)
{
uint8_t pubKey[ED25519_PUBLIC_KEY_LEN] = {0};
uint8_t priKey[ED25519_PRIVATE_KEY_LEN] = {0};
//定义两个数组来存放公钥私钥
struct HksBlob pubKeyBlob = { ED25519_PUBLIC_KEY_LEN, pubKey };
struct HksBlob priKeyBlob = { ED25519_PRIVATE_KEY_LEN, priKey };
//定义两个hksblob结构体,存放公钥私钥等相关信息
struct HksBlob tmp = { ED25519_PUBLIC_KEY_LEN, priKeyBlob.data }; //申请一个临时变量
int32_t ret = HksCryptoHalFillRandom(&tmp);
//将随机数据写进临时的私钥结构体
if (ret != HKS_SUCCESS) {
return ret;
}
ED25519_public_from_private(pubKeyBlob.data, priKeyBlob.data);
//由私钥数据得到公钥数据
if (IsBlobZero(&pubKeyBlob) || IsBlobZero(&priKeyBlob)) {
//判断这两个数据域是否全零
return HKS_ERROR_CRYPTO_ENGINE_ERROR;
}
return SaveEd25519KeyMaterial(&pubKeyBlob, &priKeyBlob, keyOut);
//最后将详细内容写进keyout结构体
}
检查密钥的size问题
#endif /* HKS_SUPPORT_ED25519_GENERATE_KEY */
//检查相关参数
static int32_t CheckEd25519Material(const struct HksBlob *key)
{
uint32_t totalSize = sizeof(struct KeyMaterial25519);
if (key->size < totalSize) {
HKS_LOG_E("Ed25519 key material too small");
return HKS_ERROR_INVALID_KEY_INFO;
//检查密钥尺寸size
}
struct KeyMaterial25519 *km = (struct KeyMaterial25519 *)key->data;
if (((key->size - totalSize) < km->pubKeySize) ||
((key->size - totalSize) < km->priKeySize) ||
((key->size - totalSize) < (km->pubKeySize + km->priKeySize))) {
HKS_LOG_E("Ed25519 key material wrong pub and pri key size %u, %u, %u",
key->size, km->pubKeySize, km->priKeySize);
//检查key.size-totalsize和数据区域各密钥的长度关系
return HKS_ERROR_INVALID_KEY_INFO;
}
return HKS_SUCCESS;
}
检查公钥以及结果存放的变量size
#ifdef HKS_SUPPORT_ED2519_GET_PUBLIC_KEY
static int32_t GetEd25519PubKeyCheck(const struct HksBlob *key, const struct HksBlob *keyOut)
{
int32_t ret = CheckEd25519Material(key);
if (ret != HKS_SUCCESS) {
return ret;
}
//先检查相关参数
/* check keyOut */
struct KeyMaterial25519 *km = (struct KeyMaterial25519 *)key->data;
if ((km->pubKeySize > (INT32_MAX - sizeof(struct KeyMaterial25519))) ||
(keyOut->size < (sizeof(struct KeyMaterial25519) + km->pubKeySize))) {
HKS_LOG_E("Ecc public keyOut size too small! keyOut size = 0x%X", keyOut->size);
return HKS_ERROR_BUFFER_TOO_SMALL;
//检查keyout.size是否足够大可以存放公钥
}
return HKS_SUCCESS;
}
对输出数据output结构体进行检查以及部分值的初始化
int32_t HksGetEd25519PubKey(const struct HksBlob *input, struct HksBlob *output)
{
int32_t ret = GetEd25519PubKeyCheck(input, output);
//先检查两个结构体的大小
if (ret != HKS_SUCCESS) {
return ret;
}
struct KeyMaterial25519 *key = (struct KeyMaterial25519 *)input->data;
uint32_t outLen = sizeof(struct KeyMaterial25519) + key->pubKeySize;
if (memcpy_s(output->data, output->size, key, outLen) != EOK) {
//初始化输出结构体的数据域
HKS_LOG_E("memcpy_s ed25519 pub key failed");
return HKS_ERROR_BAD_STATE;
}
((struct KeyMaterial25519 *)output->data)->priKeySize = 0; //输出数据的私钥长度先置为0
output->size = outLen; //输出的大小为公钥大小加结构体的大小
return HKS_SUCCESS;
}
签名算法,基于ed25519_sign()函数
#endif
//签名算法
#ifdef HKS_SUPPORT_ED25519_SIGN_VERIFY
int32_t HksEd25519Sign(const struct HksBlob *key, const struct HksBlob *message, struct HksBlob *signature)
{
int32_t ret = CheckEd25519Material(key);
if (ret != HKS_SUCCESS) {
return ret;
}
if (signature->size < HKS_SIGNATURE_MIN_SIZE) {
return HKS_ERROR_INVALID_ARGUMENT;
}
//先对参数进行检查
ret = ED25519_sign(signature->data, message->data, message->size,
key->data + sizeof(struct KeyMaterial25519),
key->data + sizeof(struct KeyMaterial25519) + ED25519_PUBLIC_KEY_LEN);
//生成签名过程,该功能封装在ED25519_sign函数中
if (ret != CRYPTO_SUCCESS) {
HKS_LOG_E("ED25519_sign failed");
return HKS_ERROR_CRYPTO_ENGINE_ERROR;
}
signature->size = HKS_SIGNATURE_MIN_SIZE;//初始化签名域大小
return HKS_SUCCESS;
}
签名的验证 基于edd25519_verify()函数
//ed25519的验证过程
int32_t HksEd25519Verify(const struct HksBlob *key, const struct HksBlob *message,
const struct HksBlob *signature)
{
int32_t ret = CheckEd25519Material(key);
if (ret != HKS_SUCCESS) {
return ret;
}
if (signature->size < HKS_SIGNATURE_MIN_SIZE) {
return HKS_ERROR_INVALID_ARGUMENT;
}
//上面部分先检查参数的size等问题
ret = ED25519_verify(message->data, message->size, signature->data,
key->data + sizeof(struct KeyMaterial25519));
//调用封装好的函数ED25519_verify进行验证签名
if (ret != CRYPTO_SUCCESS) {
HKS_LOG_E("ED25519_verify failed");
return HKS_ERROR_CRYPTO_ENGINE_ERROR;
}
return HKS_SUCCESS;
}
三、总结
以上为ed25519算法在hks中的代码体现,实现了公私钥的生成和签名生成以及验证的过程。欢迎阅读和点赞。