如何在分布式系统中处理高并发?

        由于在高并发的环境下,来不及同步处理用户发送的请求,则会导致请求发生阻塞。比如说,大量的insert,update之类的请求同时到达数据库MYSQL,直接导致无数的行锁表锁,甚至会导致请求堆积很多。从而触发 too many connections 错误。使用消息队列可以解决【异步通信】

一、消息队列概述

消息队列中间件是分布式系统中重要的组件,主要解决应用解耦,异步消息,流量削锋等问题,实现高性能,高可用,可伸缩和最终一致性架构。目前使用较多的消息队列有ActiveMQ,RabbitMQ,ZeroMQ,Kafka,MetaMQ,RocketMQ

二、消息队列应用场景

以下介绍消息队列在实际应用中常用的使用场景。异步处理应用解耦流量削锋消息通讯四个场景。

2.1异步处理

场景说明:用户注册后,需要发注册邮件和注册短信。传统的做法有两种(都是同步操作)

a、串行方式:将注册信息写入数据库成功后,发送注册邮件,再发送注册短信。以上三个任务全部完成后,返回给客户端。

b、并行方式:将注册信息写入数据库成功后,发送注册邮件的同时,发送注册短信。以上三个任务完成后,返回给客户端。与串行的差别是,并行的方式可以提高处理的时间


引入消息队列,将不是必须的业务逻辑,异步处理。改造后的架构如下:

高并发下数据存储使用redission的消息队列实现 消息队列处理高并发_客户端


按照以上约定,用户的响应时间相当于是注册信息写入数据库的时间,也就是50毫秒。注册邮件,发送短信写入消息队列后,直接返回,因此写入消息队列的速度很快,基本可以忽略,因此用户的响应时间可能是50毫秒。因此架构改变后,系统的吞吐量提高到每秒20 QPS。比串行提高了3倍,比并行提高了两倍。

高并发下数据存储使用redission的消息队列实现 消息队列处理高并发_客户端_02


 

 

2.2应用解耦

场景说明:用户下单后,订单系统需要通知库存系统。传统的做法是,订单系统调用库存系统的接口。如下图:

高并发下数据存储使用redission的消息队列实现 消息队列处理高并发_消息队列_03


传统模式的缺点:假如库存系统无法访问,则订单减库存将失败,从而导致订单失败,订单系统与库存系统耦合

如何解决以上问题呢?引入应用消息队列后的方案,如下图:

高并发下数据存储使用redission的消息队列实现 消息队列处理高并发_订单系统_04


订单系统:用户下单后,订单系统完成持久化处理,将消息写入消息队列,返回用户订单下单成功

库存系统:订阅下单的消息,采用拉/推的方式,获取下单信息,库存系统根据下单信息,进行库存操作

假如:在下单时库存系统不能正常使用。也不影响正常下单,因为下单后,订单系统写入消息队列就不再关心其他的后续操作了。实现订单系统与库存系统的应用解耦

高并发下数据存储使用redission的消息队列实现 消息队列处理高并发_订单系统_05

消息队列的弊端:消息的不确定性,延迟队列,轮询技术来解决该问题即可!

 2.3流量削锋
流量削锋也是消息队列中的常用场景,一般在秒杀或团抢活动中使用广泛。
应用场景:秒杀活动,一般会因为流量过大,导致流量暴增,应用挂掉。为解决这个问题,一般需要在应用前端加入消息队列。
a、可以控制活动的人数
b、可以缓解短时间内高流量压垮应用

高并发下数据存储使用redission的消息队列实现 消息队列处理高并发_订单系统_06


用户的请求,服务器接收后,首先写入消息队列。假如消息队列长度超过最大数量,则直接抛弃用户请求或跳转到错误页面。

秒杀业务根据消息队列中的请求信息,再做后续处理

2.4日志处理(也属于流量削锋)

日志处理是指将消息队列用在日志处理中,比如Kafka的应用,解决大量日志传输的问题。架构简化如下

高并发下数据存储使用redission的消息队列实现 消息队列处理高并发_客户端_07


日志采集客户端,负责日志数据采集,定时写受写入Kafka队列

Kafka消息队列,负责日志数据的接收,存储和转发

日志处理应用:订阅并消费kafka队列中的日志数据?

2.5消息通讯

消息通讯是指,消息队列一般都内置了高效的通信机制,因此也可以用在纯的消息通讯。比如实现点对点消息队列,或者聊天室等

点对点

高并发下数据存储使用redission的消息队列实现 消息队列处理高并发_客户端_08


客户端A和客户端B使用同一队列,进行消息通讯。

聊天室通讯:

高并发下数据存储使用redission的消息队列实现 消息队列处理高并发_客户端_09


客户端A,客户端B,客户端N订阅同一主题,进行消息发布和接收。实现类似聊天室效果。

以上实际是消息队列的两种消息模式,点对点或发布订阅模式。模型为示意图,供参考。

三、消息中间件示例——日志收集系统

分为Zookeeper注册中心,日志收集客户端,Kafka集群和Storm集群(OtherApp)四部分组成。
Zookeeper注册中心,提出负载均衡和地址查找服务
日志收集客户端,用于采集应用系统的日志,并将数据推送到kafka队列
Kafka集群:接收,路由,存储,转发等消息处理
Storm集群:与OtherApp处于同一级别,采用拉的方式消费队列中的数据

四、JMS消息服务

讲消息队列就不得不提JMS 。JMS(JAVA Message Service,java消息服务)API是一个消息服务的标准/规范,允许应用程序组件基于JavaEE平台创建、发送、接收和读取消息。它使分布式通信耦合度更低,消息服务更加可靠以及异步性。
在EJB架构中,有消息bean可以无缝的与JM消息服务集成。在J2EE架构模式中,有消息服务者模式,用于实现消息与应用直接的解耦。
4.1消息模型
在JMS标准中,有两种消息模型P2P(Point to Point),Publish/Subscribe(Pub/Sub)。
4.1.1 P2P模式
P2P模式包含三个角色:消息队列(Queue),发送者(Sender),接收者(Receiver)。每个消息都被发送到一个特定的队列,接收者从队列中获取消息。队列保留着消息,直到他们被消费或超时。
P2P的特点:
每个消息只有一个消费者(Consumer)(即一旦被消费,消息就不再在消息队列中)
发送者和接收者之间在时间上没有依赖性,也就是说当发送者发送了消息之后,不管接收者有没有正在运行,它不会影响到消息被发送到队列
接收者在成功接收消息之后需向队列应答成功?
如果希望发送的每个消息都会被成功处理的话,那么需要P2P模式。
4.1.2 Pub/Sub模式
包含三个角色主题(Topic),发布者(Publisher),订阅者(Subscriber) 多个发布者将消息发送到Topic,系统将这些消息传递给多个订阅者。
Pub/Sub的特点:
每个消息可以有多个消费者
发布者和订阅者之间有时间上的依赖性。针对某个主题(Topic)的订阅者,它必须创建一个订阅者之后,才能消费发布者的消息
为了消费消息,订阅者必须保持运行的状态
为了缓和这样严格的时间相关性,JMS允许订阅者创建一个可持久化的订阅。这样,即使订阅者没有被激活(运行),它也能接收到发布者的消息。
如果希望发送的消息可以不被做任何处理、或者只被一个消息者处理、或者可以被多个消费者处理的话,那么可以采用Pub/Sub模型。
4.2消息消费
在JMS中,消息的产生和消费都是异步的。对于消费来说,JMS的消息者可以通过两种方式来消费消息。
(1)同步
订阅者或接收者通过receive方法来接收消息,receive方法在接收到消息之前(或超时之前)将一直阻塞;
(2)异步
订阅者或接收者可以注册为一个消息监听器。当消息到达之后,系统自动调用监听器的onMessage方法。
JNDI:Java命名和目录接口,是一种标准的Java命名系统接口。可以在网络上查找和访问服务。通过指定一个资源名称,该名称对应于数据库或命名服务中的一个记录,同时返回资源连接建立所必须的信息。
JNDI在JMS中起到查找和访问发送目标或消息来源的作用。