通过 HTML5 + JavaScript 技术实现的人脸识别,目前仅适用于 Chrome 浏览器,首先需要在地址栏输入 about:flags ,然后找到“启用 MediaStream” 这一项,点击“启用” 后重启 Chrome 浏览器。
当你摇头晃脑的时候,那副眼镜会跟着移动并帮你戴上眼镜。
你可以查看网页源码来了解具体的实现细节。
这是一篇国外的文章,介绍如何通过 WebRTC、OpenCV 和 WebSocket 技术实现在 Web 浏览器上的人脸识别,架构在 Jetty 之上。
实现的效果包括:
还能识别眼睛
人脸识别的核心代码:
XML/HTML Code
<div>
<videoidvideoid="live"width="320"height="240" autoplay style="display: inline;"></video>
<canvaswidthcanvaswidth="320"id="canvas"height="240"style="display: inline;"></canvas>
</div>
<scripttypescripttype="text/javascript">
var video = $("#live").get()[0];
var canvas = $("#canvas");
var ctx = canvas.get()[0].getContext('2d');
navigator.webkitGetUserMedia("video",
function(stream) {
video.src = webkitURL.createObjectURL(stream);
},
function(err) {
console.log("Unable to get video stream!")
}
)
timer = setInterval(
function () {
ctx.drawImage(video, 0, 0, 320, 240);
}, 250);
</script>
JavaScript Code
publicclass FaceDetection {
privatestaticfinal String CASCADE_FILE ="resources/haarcascade_frontalface_alt.xml";
privateint minsize = 20;
privateint group = 0;
privatedouble scale = 1.1;
/**
* Based on FaceDetection example from JavaCV.
*/
publicbyte[] convert(byte[] p_w_picpathData) throws IOException {
// create p_w_picpath from supplied bytearray
IplImage originalImage = cvDecodeImage(cvMat(1, p_w_picpathData.length,CV_8UC1, newBytePointer(p_w_picpathData)));
// Convert to grayscale for recognition
IplImage grayImage = IplImage.create(originalImage.width(), originalImage.height(), IPL_DEPTH_8U, 1);
cvCvtColor(originalImage, grayImage, CV_BGR2GRAY);
// storage is needed to store information during detection
CvMemStorage storage = CvMemStorage.create();
// Configuration to use in analysis
CvHaarClassifierCascade cascade = newCvHaarClassifierCascade(cvLoad(CASCADE_FILE));
// We detect the faces.
CvSeq faces = cvHaarDetectObjects(grayImage, cascade, storage, scale, group, minsize);
// We iterate over the discovered faces and draw yellow rectangles around them.
for (int i = 0; i < faces.total(); i++) {
CvRect r = new CvRect(cvGetSeqElem(faces, i));
cvRectangle(originalImage, cvPoint(r.x(), r.y()),
cvPoint(r.x() + r.width(), r.y() + r.height()),
CvScalar.YELLOW, 1, CV_AA, 0);
}
// convert the resulting p_w_picpath back to an array
ByteArrayOutputStream bout = new ByteArrayOutputStream();
BufferedImage imgb = originalImage.getBufferedImage();
ImageIO.write(imgb, "png", bout);
return bout.toByteArray();
}
}
扫一扫上方二维码关注我们,可获得更多资讯!