原文链接:http://wuchong.me/blog/2016/05/04/flink-internal-how-to-build-streamgraph/
继上文Flink 原理与实现:架构和拓扑概览中介绍了Flink的四层执行图模型,本文将主要介绍 Flink 是如何根据用户用Stream API编写的程序,构造出一个代表拓扑结构的StreamGraph的。
注:本文比较偏源码分析,所有代码都是基于 flink-1.0.x 版本,建议在阅读本文前先对Stream API有个了解,详见官方文档。
StreamGraph 相关的代码主要在 org.apache.flink.streaming.api.graph
包中。构造StreamGraph的入口函数是 StreamGraphGenerator.generate(env, transformations)
。该函数会由触发程序执行的方法StreamExecutionEnvironment.execute()
调用到。也就是说 StreamGraph 是在 Client 端构造的,这也意味着我们可以在本地通过调试观察 StreamGraph 的构造过程。
Transformation
StreamGraphGenerator.generate
的一个关键的参数是 List<StreamTransformation<?>>
。StreamTransformation
代表了从一个或多个DataStream
生成新DataStream
的操作。DataStream
的底层其实就是一个 StreamTransformation
,描述了这个DataStream
是怎么来的。
StreamTransformation的类图如下图所示:
DataStream 上常见的 transformation 有 map、flatmap、filter等(见DataStream Transformation了解更多)。这些transformation会构造出一棵 StreamTransformation 树,通过这棵树转换成 StreamGraph。比如 DataStream.map
源码如下,其中SingleOutputStreamOperator
为DataStream的子类:
public <R> SingleOutputStreamOperator<R> map(MapFunction<T, R> mapper) { TypeInformation<R> outType = TypeExtractor.getMapReturnTypes(clean(mapper), getType(), Utils.getCallLocationName(), true);
return transform("Map", outType, new StreamMap<>(clean(mapper))); }
public <R> SingleOutputStreamOperator<R> transform(String operatorName, TypeInformation<R> outTypeInfo, OneInputStreamOperator<T, R> operator) { transformation.getOutputType();
OneInputTransformation<T, R> resultTransform = new OneInputTransformation<>( this.transformation, operatorName, operator, outTypeInfo, environment.getParallelism());
@SuppressWarnings({ "unchecked", "rawtypes" }) SingleOutputStreamOperator<R> returnStream = new SingleOutputStreamOperator(environment, resultTransform);
getExecutionEnvironment().addOperator(resultTransform);
return returnStream; }
|
从上方代码可以了解到,map转换将用户自定义的函数MapFunction
包装到StreamMap
这个Operator中,再将StreamMap
包装到OneInputTransformation
,最后该transformation存到env中,当调用env.execute
时,遍历其中的transformation集合构造出StreamGraph。其分层实现如下图所示:
另外,并不是每一个 StreamTransformation 都会转换成 runtime 层中物理操作。有一些只是逻辑概念,比如 union、split/select、partition等。如下图所示的转换树,在运行时会优化成下方的操作图。
union、split/select、partition中的信息会被写入到 Source –> Map 的边中。通过源码也可以发现,UnionTransformation
,SplitTransformation
,SelectTransformation
,PartitionTransformation
由于不包含具体的操作所以都没有StreamOperator成员变量,而其他StreamTransformation的子类基本上都有。
StreamOperator
DataStream 上的每一个 Transformation 都对应了一个 StreamOperator,StreamOperator是运行时的具体实现,会决定UDF(User-Defined Funtion)的调用方式。下图所示为 StreamOperator 的类图(点击查看大图):
可以发现,所有实现类都继承了AbstractStreamOperator
。另外除了 project 操作,其他所有可以执行UDF代码的实现类都继承自AbstractUdfStreamOperator
,该类是封装了UDF的StreamOperator。UDF就是实现了Function
接口的类,如MapFunction
,FilterFunction
。
生成 StreamGraph 的源码分析
我们通过在DataStream上做了一系列的转换(map、filter等)得到了StreamTransformation集合,然后通过StreamGraphGenerator.generate
获得StreamGraph,该方法的源码如下:
public static StreamGraph generate(StreamExecutionEnvironment env, List<StreamTransformation<?>> transformations) { return new StreamGraphGenerator(env).generateInternal(transformations); }
private StreamGraph generateInternal(List<StreamTransformation<?>> transformations) { for (StreamTransformation<?> transformation: transformations) { transform(transformation); } return streamGraph; }
private Collection<Integer> transform(StreamTransformation<?> transform) { if (alreadyTransformed.containsKey(transform)) { return alreadyTransformed.get(transform); }
LOG.debug("Transforming " + transform);
transform.getOutputType();
Collection<Integer> transformedIds; if (transform instanceof OneInputTransformation<?, ?>) { transformedIds = transformOnInputTransform((OneInputTransformation<?, ?>) transform); } else if (transform instanceof TwoInputTransformation<?, ?, ?>) { transformedIds = transformTwoInputTransform((TwoInputTransformation<?, ?, ?>) transform); } else if (transform instanceof SourceTransformation<?>) { transformedIds = transformSource((SourceTransformation<?>) transform); } else if (transform instanceof SinkTransformation<?>) { transformedIds = transformSink((SinkTransformation<?>) transform); } else if (transform instanceof UnionTransformation<?>) { transformedIds = transformUnion((UnionTransformation<?>) transform); } else if (transform instanceof SplitTransformation<?>) { transformedIds = transformSplit((SplitTransformation<?>) transform); } else if (transform instanceof SelectTransformation<?>) { transformedIds = transformSelect((SelectTransformation<?>) transform); } else if (transform instanceof FeedbackTransformation<?>) { transformedIds = transformFeedback((FeedbackTransformation<?>) transform); } else if (transform instanceof CoFeedbackTransformation<?>) { transformedIds = transformCoFeedback((CoFeedbackTransformation<?>) transform); } else if (transform instanceof PartitionTransformation<?>) { transformedIds = transformPartition((PartitionTransformation<?>) transform); } else { throw new IllegalStateException("Unknown transformation: " + transform); }
if (!alreadyTransformed.containsKey(transform)) { alreadyTransformed.put(transform, transformedIds); }
if (transform.getBufferTimeout() > 0) { streamGraph.setBufferTimeout(transform.getId(), transform.getBufferTimeout()); } if (transform.getUid() != null) { streamGraph.setTransformationId(transform.getId(), transform.getUid()); }
return transformedIds; }
|
最终都会调用 transformXXX
来对具体的StreamTransformation进行转换。我们可以看下transformOnInputTransform(transform)
的实现:
private <IN, OUT> Collection<Integer> transformOnInputTransform(OneInputTransformation<IN, OUT> transform) { Collection<Integer> inputIds = transform(transform.getInput());
if (alreadyTransformed.containsKey(transform)) { return alreadyTransformed.get(transform); }
String slotSharingGroup = determineSlotSharingGroup(transform.getSlotSharingGroup(), inputIds);
streamGraph.addOperator(transform.getId(), slotSharingGroup, transform.getOperator(), transform.getInputType(), transform.getOutputType(), transform.getName());
if (transform.getStateKeySelector() != null) { TypeSerializer<?> keySerializer = transform.getStateKeyType().createSerializer(env.getConfig()); streamGraph.setOneInputStateKey(transform.getId(), transform.getStateKeySelector(), keySerializer); }
streamGraph.setParallelism(transform.getId(), transform.getParallelism());
for (Integer inputId: inputIds) { streamGraph.addEdge(inputId, transform.getId(), 0); }
return Collections.singleton(transform.getId()); }
|
该函数首先会对该transform的上游transform进行递归转换,确保上游的都已经完成了转化。然后通过transform构造出StreamNode,最后与上游的transform进行连接,构造出StreamNode。
最后再来看下对逻辑转换(partition、union等)的处理,如下是transformPartition
函数的源码:
private <T> Collection<Integer> transformPartition(PartitionTransformation<T> partition) { StreamTransformation<T> input = partition.getInput(); List<Integer> resultIds = new ArrayList<>();
Collection<Integer> transformedIds = transform(input); for (Integer transformedId: transformedIds) { int virtualId = StreamTransformation.getNewNodeId(); streamGraph.addVirtualPartitionNode(transformedId, virtualId, partition.getPartitioner()); resultIds.add(virtualId); }
return resultIds; }
|
对partition的转换没有生成具体的StreamNode和StreamEdge,而是添加一个虚节点。当partition的下游transform(如map)添加edge时(调用StreamGraph.addEdge
),会把partition信息写入到edge中。如StreamGraph.addEdgeInternal
所示:
public void addEdge(Integer upStreamVertexID, Integer downStreamVertexID, int typeNumber) { addEdgeInternal(upStreamVertexID, downStreamVertexID, typeNumber, null, new ArrayList<String>()); } private void addEdgeInternal(Integer upStreamVertexID, Integer downStreamVertexID, int typeNumber, StreamPartitioner<?> partitioner, List<String> outputNames) {
if (virtualSelectNodes.containsKey(upStreamVertexID)) { int virtualId = upStreamVertexID; upStreamVertexID = virtualSelectNodes.get(virtualId).f0; if (outputNames.isEmpty()) { outputNames = virtualSelectNodes.get(virtualId).f1; } addEdgeInternal(upStreamVertexID, downStreamVertexID, typeNumber, partitioner, outputNames); } else if (virtuaPartitionNodes.containsKey(upStreamVertexID)) { int virtualId = upStreamVertexID; upStreamVertexID = virtuaPartitionNodes.get(virtualId).f0; if (partitioner == null) { partitioner = virtuaPartitionNodes.get(virtualId).f1; } addEdgeInternal(upStreamVertexID, downStreamVertexID, typeNumber, partitioner, outputNames); } else { StreamNode upstreamNode = getStreamNode(upStreamVertexID); StreamNode downstreamNode = getStreamNode(downStreamVertexID);
if (partitioner == null && upstreamNode.getParallelism() == downstreamNode.getParallelism()) { partitioner = new ForwardPartitioner<Object>(); } else if (partitioner == null) { partitioner = new RebalancePartitioner<Object>(); }
if (partitioner instanceof ForwardPartitioner) { if (upstreamNode.getParallelism() != downstreamNode.getParallelism()) { throw new UnsupportedOperationException("Forward partitioning does not allow " + "change of parallelism. Upstream operation: " + upstreamNode + " parallelism: " + upstreamNode.getParallelism() + ", downstream operation: " + downstreamNode + " parallelism: " + downstreamNode.getParallelism() + " You must use another partitioning strategy, such as broadcast, rebalance, shuffle or global."); } } StreamEdge edge = new StreamEdge(upstreamNode, downstreamNode, typeNumber, outputNames, partitioner); getStreamNode(edge.getSourceId()).addOutEdge(edge); getStreamNode(edge.getTargetId()).addInEdge(edge); } }
|
实例讲解
如下程序,是一个从 Source 中按行切分成单词并过滤输出的简单流程序,其中包含了逻辑转换:随机分区shuffle。我们会分析该程序是如何生成StreamGraph的。
DataStream<String> text = env.socketTextStream(hostName, port); text.flatMap(new LineSplitter()).shuffle().filter(new HelloFilter()).print();
|
首先会在env中生成一棵transformation树,用List<StreamTransformation<?>>
保存。其结构图如下:
其中符号*
为input指针,指向上游的transformation,从而形成了一棵transformation树。然后,通过调用StreamGraphGenerator.generate(env, transformations)
来生成StreamGraph。自底向上递归调用每一个transformation,也就是说处理顺序是Source->FlatMap->Shuffle->Filter->Sink。
如上图所示:
首先处理的Source,生成了Source的StreamNode。
然后处理的FlatMap,生成了FlatMap的StreamNode,并生成StreamEdge连接上游Source和FlatMap。由于上下游的并发度不一样(1:4),所以此处是Rebalance分区。
然后处理的Shuffle,由于是逻辑转换,并不会生成实际的节点。将partitioner信息暂存在virtuaPartitionNodes
中。
在处理Filter时,生成了Filter的StreamNode。发现上游是shuffle,找到shuffle的上游FlatMap,创建StreamEdge与Filter相连。并把ShufflePartitioner的信息写到StreamEdge中。
最后处理Sink,创建Sink的StreamNode,并生成StreamEdge与上游Filter相连。由于上下游并发度一样(4:4),所以此处选择 Forward 分区。
最后可以通过 UI可视化 来观察得到的 StreamGraph。
总结
本文主要介绍了 Stream API 中 Transformation 和 Operator 的概念,以及如何根据Stream API编写的程序,构造出一个代表拓扑结构的StreamGraph的。本文的源码分析涉及到较多代码,如果有兴趣建议结合完整源码进行学习。下一篇文章将介绍 StreamGraph 如何转换成 JobGraph 的,其中设计到了图优化的技巧。