# coding: utf-8
import collections
import numpy as np
import os
from sklearn.neighbors import NearestNeighbors
def cos(vector1,vector2):
dot_product = 0.0;
normA = 0.0;
normB = 0.0;
for a,b in zip(vector1,vector2):
dot_product += a*b
normA += a**2
normB += b**2
if normA == 0.0 or normB==0.0:
return None
else:
return dot_product / ((normA*normB)**0.5)
def iterbrowse(path):
for home, dirs, files in os.walk(path):
for filename in files:
yield os.path.join(home, filename)
def get_data(filename):
white_verify = []
with open(filename) as f:
lines = f.readlines()
for line in lines:
a = line.split("\t")
if len(a) != 78:
print(line)
raise Exception("fuck")
white_verify.append([float(n) for n in a[3:]])
return white_verify
unwanted_features = {6, 7, 8, 41,42,43,67,68,69,70,71,72,73,74,75}
def get_wanted_data(x):
return x
"""
ans = []
for item in x:
#row = [data for i, data in enumerate(item) if i+6 in wanted_feature]
row = [data for i, data in enumerate(item) if i+6 not in unwanted_features]
ans.append(row)
#assert len(row) == len(wanted_feature)
assert len(row) == len(x[0])-len(unwanted_features)
return ans
"""
if __name__ == "__main__":
neg_file = "cc_data/black/black_all.txt"
pos_file = "cc_data/white/white_all.txt"
X = []
y = []
# if os.path.isfile(pos_file):
# if pos_file.endswith('.txt'):
# pos_set = np.genfromtxt(pos_file)
# elif pos_file.endswith('.npy'):
# pos_set = np.load(pos_file)
# X.extend(pos_set)
# y += [0] * len(pos_set)
# print("len of X(white):", len(X))
if os.path.isfile(neg_file):
if neg_file.endswith('.txt'):
neg_set = np.genfromtxt(neg_file)
elif neg_file.endswith('.npy'):
neg_set = np.load(neg_file)
X.extend(list(neg_set) * 1)
y += [1] * (1 * len(neg_set))
print("len of X:", len(X))
# print("X sample:", X[:3])
# print("len of y:", len(y))
# print("y sample:", y[:3])
X = [x[3:] for x in X]
X = get_wanted_data(X)
# print("filtered X sample:", X[:3])
black_verify = []
for f in iterbrowse("todo/top"):
print(f)
black_verify += get_data(f)
# print(black_verify)
black_verify = get_wanted_data(black_verify)
black_verify_labels = [1] * len(black_verify)
white_verify = get_data("todo/white_verify.txt")
# print(white_verify)
white_verify = get_wanted_data(white_verify)
white_verify_labels = [0] * len(white_verify)
unknown_verify = get_data("todo/pek_feature74.txt")
unknown_verify = get_wanted_data(unknown_verify)
bd_verify = get_data("guzhaoshen_pek_out.txt")
# print(unknown_verify)
# samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
#neigh = NearestNeighbors(n_neighbors=3)
neigh = NearestNeighbors(n_neighbors=1, metric='cosine')
neigh.fit(X)
print("neigh.kneighbors(black_verify)")
nearest_points = (neigh.kneighbors(black_verify))
print(nearest_points)
for i, x in enumerate(black_verify):
print(i, nearest_points[1][i], "cosine:", cos(x, nearest_points[1][i]))
#print(neigh.predict(black_verify))
print("neigh.kneighbors(white_verify)")
nearest_points = (neigh.kneighbors(white_verify))
print(nearest_points)
for i, x in enumerate(white_verify):
print(i, nearest_points[1][i], "cosine:", cos(x, nearest_points[1][i]))
#print(neigh.predict(white_verify))
print("neigh.kneighbors(unknown_verify)")
nearest_points = (neigh.kneighbors(unknown_verify))
print(nearest_points)
for i, x in enumerate(unknown_verify):
print(i, nearest_points[1][i], "cosine:", cos(x, nearest_points[1][i]))
#print(neigh.predict(unknown_verify))
print("neigh.kneighbors(self)")
print(neigh.kneighbors(X[:3]))
#print(neigh.predict(X[:3]))
print("neigh.kneighbors(bd pek)")
print(neigh.kneighbors(bd_verify))
nearest_points = (neigh.kneighbors(bd_verify))
print(nearest_points)
for i, x in enumerate(bd_verify):
print(i, nearest_points[1][i], "cosine:", cos(x, nearest_points[1][i]))
输出示例:
neigh.kneighbors(white_verify)
(array([[ 0.01140831],
[ 0.0067373 ],
[ 0.00198682],
[ 0.00686728],
[ 0.00210445],
[ 0.00061413],
[ 0.00453888]]), array([[11032],
[ 967],
[11091],
[13149],
[11091],
[19041],
[13068]]))
(0, array([11032]), 'cosine:', 1.0)
(1, array([967]), 'cosine:', 1.0)
(2, array([11091]), 'cosine:', 1.0)
(3, array([13149]), 'cosine:', 1.0)
(4, array([11091]), 'cosine:', 1.0)
(5, array([19041]), 'cosine:', 1.0)
(6, array([13068]), 'cosine:', 1.0)
样本质量堪忧啊!!!
注意:如果是常规knn,计算距离时候记得标准化。如果各个维度的数据属性衡量单位不一样:
from sklearn import preprocessing
scaler = preprocessing.StandardScaler().fit(X)
X = scaler.transform(X)
print("standard X sample:", X[:3])
black_verify = scaler.transform(black_verify)
print(black_verify)
white_verify = scaler.transform(white_verify)
print(white_verify)
unknown_verify = scaler.transform(unknown_verify)
print(unknown_verify)