对于es 2.4版本,要能定制spark partitioner需要如下方式启动spark shell:
spark-2.0.0-bin-hadoop2.6/bin/spark-shell --jars elasticsearch-hadoop-5.0.1/dist/elasticsearch-spark-20_2.11-5.0.1.jar,elasticsearch-2.4.1/lib/elasticsearch-2.4.1.jar,elasticsearch-2.4.1/lib/lucene-core-5.5.2.jar
因为es 2.4的路由方式依赖es jar包里的murmurhash函数:
import org.apache.spark._
import org.apache.spark.streaming._
import org.elasticsearch.spark._
import org.apache.spark.Partitioner
import org.elasticsearch.hadoop.cfg.PropertiesSettings
import org.elasticsearch.spark.cfg.SparkSettingsManager
import org.elasticsearch.hadoop.cfg.Settings
import org.elasticsearch.hadoop.rest.RestRepository
import scala.collection.JavaConversions._
import org.elasticsearch.cluster.routing.Murmur3HashFunction;
import org.elasticsearch.common.math.MathUtils;
// 自定义Partitioner
class ESShardPartitioner(settings: String) extends org.apache.spark.Partitioner {
protected var _numPartitions = -1;
override def numPartitions: Int = {
val newSettings = new org.elasticsearch.hadoop.cfg.PropertiesSettings().load(settings);
// 生产环境下,需要自行设置索引的 index/type,我是以web/blog作为实验的index
newSettings.setResourceRead("web/blog"); // ******************** !!! modify it !!! ********************
newSettings.setResourceWrite("web/blog"); // ******************** !!! modify it !!! ********************
val repository = new org.elasticsearch.hadoop.rest.RestRepository(newSettings);
val targetShards = repository.getWriteTargetPrimaryShards(newSettings.getNodesClientOnly());
repository.close();
// targetShards ??? data structure
_numPartitions = targetShards.size();
println("********************numPartitions*************************");
println(_numPartitions);
_numPartitions;
}
override def getPartition(docID: Any): Int = {
val _hashFunction = new org.elasticsearch.cluster.routing.Murmur3HashFunction;
val r = _hashFunction.hash(docID.toString());
val shardId = org.elasticsearch.common.math.MathUtils.mod(r, _numPartitions);
println("********************shardId*************************");
println(shardId)
shardId;
}
}
sc.getConf.setMaster("local").setAppName("RDDTest").set("es.nodes", "127.0.0.1").set("spark.serializer", "org.apache.spark.serializer.KryoSerializer").set("es.index.auto.create", "true");
val ssc = new StreamingContext(sc, Seconds(2));
val fileStream = ssc.textFileStream("/tmp/data");
fileStream.foreachRDD { rdd => {
def makeItem(content: String) : (String, Map[String,String]) = {
val uuid = java.util.UUID.randomUUID.toString();
(uuid, Map("content"->content, "uuid"->uuid))
}
println("********************start*************************");
println("********************default partition size*************************");
println(rdd.partitions.size);
var r2 = rdd.map(makeItem);
val sparkCfg = new org.elasticsearch.spark.cfg.SparkSettingsManager().load(rdd.sparkContext.getConf)
val settings = sparkCfg.save();
var r3 = r2.partitionBy(new ESShardPartitioner(settings));
// r3.map(x=>x._2).saveToEs("web/blog")
println("********************changed partition size*************************");
println(r3.partitions.size);
r3.saveToEsWithMeta("web/blog")
println("data count: " + rdd.count.toString);
println("*********************end************************");
}};
ssc.start();
ssc.awaitTermination();
ES 其中一个机器的配置:
cluster.name: es_xxx
#cluster.name: es_single888
discovery.zen.ping.multicast.enabled: false
discovery.zen.ping.unicast.hosts: ["127.0.0.1:9300", "127.0.0.1:9301", "127.0.0.1:9302"]
#discovery.zen.ping.unicast.hosts: ["10.178.206.190:9300", "10.178.204.225:9300", "10.178.207.88:9300", "10.178.209.161:9300", "10.178.208.230:9300"]
network.host: 127.0.0.1
transport.tcp.port: 9300
http.port: 9200
index.refresh_interval: 30s
indices.memory.index_buffer_size: 30%
index.store.type: mmapfs
index.translog.flush_threshold_ops: 50000
indices.store.throttle.type: none
index.legacy.routing.use_type: false
index.number_of_shards: 3
index.number_of_replicas: 0