1627. Join
Time limit: 4.0 second
Memory limit: 64 MB
Businessman Petya recently bought a new house. This house has one floor with n × m square rooms, placed in rectangular lattice. Some rooms are pantries and the other ones are bedrooms. Now he wants to join all bedrooms with doors in such a way that there will be exactly one way between any pair of them. He can make doors only between neighbouring bedrooms (i.e. bedrooms having a common wall). Now he wants to count the number of different ways he can do it.
Input
First line contains two integers n and m (1 ≤ n, m ≤ 9) — the number of lines and columns in the lattice. Next n lines contain exactly m characters representing house map, where "." means bedroom and "*" means pantry. It is guaranteed that there is at least one bedroom in the house.
Output
Output the number of ways to join bedrooms modulo 10 9.
Samples
input | output |
2 2.... | 4 |
2 2*..* | 0 |
Problem Source: SPbSU ITMO contest. Petrozavodsk training camp. Winter 2008.
Tags: ( show tags for all problems
Difficulty: 1154
Printable version
Submit solution
Discussion (13)
All submissions (1680)
All accepted submissions (428)
Solutions rating (223)
还是用拉普拉斯矩阵, 消元时用类似辗转相除的办法,保证中间过程为整数
/*************************************************************************
> File Name: st10.cpp
> Author: ALex
> Created Time: 2015年01月29日 星期四 16时22分40秒
************************************************************************/
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <vector>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const double pi = acos(-1);
const int inf = 0x3f3f3f3f;
const double eps = 1e-15;
typedef long long LL;
typedef pair <int, int> PLL;
const int N = 210;
const int mod = 1000000000;
int dir[4][2] = {1, 0, -1, 0, 0, 1, 0, -1};
char str[20][20];
int ord[N];
LL mat[N][N];
LL Det (int n)
{
for (int i = 0; i < n; ++i)
{
for (int j = 0; j < n; ++j)
{
mat[i][j] %= mod;
}
}
LL res = 1;
for (int i = 0; i < n; ++i)
{
if (!mat[i][i])
{
bool flag = false;
for (int j = i + 1; j < n; ++j)
{
if (mat[j][i])
{
flag = true;
for (int k = i; k < n; ++k)
{
swap (mat[i][k], mat[j][k]);
}
res = -res;
break;
}
}
if (!flag)
{
return 0;
}
}
for (int j = i + 1; j < n; ++j)
{
while (mat[j][i])
{
LL t = mat[i][i] / mat[j][i];
for (int k = i; k < n; ++k)
{
mat[i][k] = (mat[i][k] - t * mat[j][k]) % mod;
swap (mat[i][k], mat[j][k]);
}
res = -res;
}
}
res = (res * mat[i][i]) % mod;
}
return (res + mod) % mod;
}
int main()
{
int n, m;
while (~scanf("%d%d", &n, &m))
{
int cnt = 0;
memset (mat, 0, sizeof(mat));
for (int i = 0; i < n; ++i)
{
scanf("%s", str[i]);
for (int j = 0; j < m; ++j)
{
if (str[i][j] == '.')
{
ord[i * m + j] = cnt++;
}
}
}
for (int i = 0; i < n; ++i)
{
for (int j = 0; j < m; ++j)
{
if (str[i][j] == '.')
{
for (int k = 0; k < 4; ++k)
{
int x = i + dir[k][0];
int y = j + dir[k][1];
if (x < 0 || x >= n || y < 0 || y >= m || str[x][y] != '.')
{
continue;
}
mat[ord[i * m + j]][ord[x * m + y]] = -1;
}
}
}
}
for (int i = 0; i < cnt; ++i)
{
LL ret = 0;
for (int j = 0; j < cnt; ++j)
{
if (i != j && mat[i][j])
{
++ret;
}
}
mat[i][i] = ret;
}
LL ans = Det(cnt - 1);
printf("%lld\n", ans);
}
return 0;
}