题目大意:给你一张图,问最小生成树是不是唯一的

解题思路:先将最小生成树求出来,并把形成最小生成树的边标记一下
接着在枚举那些不是最小生成树的边,看添加之后,形成的环中的最大边是否和该边相等,如果相等,则表示最小生成树不唯一

#include <cstdio>
#include <cstring>
#include <vector>
using namespace std;

#define N 110
#define M 10010
#define INF 0x3f3f3f3f

struct Node{
    int x, y;
}node[M];

int dis[N][N], f[N], d[N], maxcost[N][N];
int n, m;
bool vis[N][N] ,mark[N];
vector<int> v;
void init() {

    memset(dis, 0x3f, sizeof(dis));
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; i++)
        dis[i][i] = 0;

    int u, v, c;
    for (int i = 0; i < m; i++) {
        scanf("%d%d%d", &u, &v, &c);
        node[i].x = u; node[i].y = v;
        dis[u][v] = dis[v][u] = min(dis[u][v], c);
    }
}

int Prim() {
    for (int i = 1; i <= n; i++)
        d[i] = INF;
    memset(mark, 0, sizeof(mark));
    memset(vis, 0, sizeof(vis));
    v.clear();

    d[1] = 0;
    f[1] = 1;
    int ans = 0;
    for (int i = 1; i <= n; i++) {
        int t = INF, x;
        for (int j = 1; j <= n; j++)
            if (d[j] < t && !mark[j])
                t = d[x = j];
        mark[x] = vis[f[x]][x] = vis[x][f[x]] = true;
        ans += dis[f[x]][x];

        int size = v.size();
        for (int j = 0; j < size; j++)
            maxcost[v[j]][x] = maxcost[x][v[j]] = max(maxcost[v[j]][f[x]], dis[f[x]][x]);
        v.push_back(x);

        for (int j = 1; j <= n; j++)
            if (!mark[j] && dis[j][x] < d[j]) {
                d[j] = dis[j][x];
                f[j] = x;
            }
    }
    return ans;
}

void solve() {
    int ans = Prim();
    bool flag = false;
    int x, y;
    for (int i = 0; i < m; i++) {
        x = node[i].x; y = node[i].y;
        if (!vis[x][y] && dis[x][y] == maxcost[x][y]) {
            flag = true;
            break;
        }
    }
    if (flag)
        printf("Not Unique!\n");
    else
        printf("%d\n", ans);
}


int main() {
    int test;
    scanf("%d", &test);
    while (test--) {
        init();
        solve();
    }
    return 0;
}