1. select函数

select函数主要是用来实现多路复用输入和输出模型,select系统调用是用来让我们监视多个文件句柄的状态变化的。程序会停在select处等待,直到被监视的文件句柄有一个或多个发生了状态。

select函数:

int select(int nfds,fd_set *readfds,fd_set writefds,fd_set  * exceptfds,struct timeval * timeout)

参数nfds是需要监视的最大的文件描述符值+1;
rdset,wrset,exset分别对应于需要检测的可读文件描述符的集合,可写文件描述符的集 合及异
常文件描述符的集合。
struct timeval结构用于描述一段时间长度,如果在这个时间内,需要监视的描述符没有事件
发生则函数返回,返回值为0。
下面的宏提供了处理这三种描述词组的方式:
FD_CLR(inr fd,fd_set* set);用来清除描述词组set中相关fd 的位
FD_ISSET(int fd,fd_set *set);用来测试描述词组set中相关fd 的位是否为真
FD_SET(int fd,fd_set*set);用来设置描述词组set中相关fd的位
FD_ZERO(fd_set *set);用来清除描述词组set的全部位
如果参数timeout设为:
NULL:则表示select()没有timeout,select将一直被阻塞,直到某个文件描述符上发生了
事件。
0:仅检测描述符集合的状态,然后立即返回,并不等待外部事件的发生。
特定的时间值:如果在指定的时间段里没有事件发生,select将超时返回。
函数返回值:
执行成功则返回文件描述词状态已改变的个数
如果返回0代表在描述词状态改变前已超过timeout时间,没有返回;
当有错误发生时则返回-1,

select程序:

select、epoll和poll_程序

select、epoll和poll_程序_02

select、epoll和poll_模型_03

select、epoll和poll_程序_04

select、epoll和poll_程序_05

2.poll函数

不同与select使用三个位图来表示三个fdset的方式,poll使用一个 pollfd的指针实现。

int poll(struct pollfd * fds,nfds_t nfds,int timeout)

struct pollfd

{

int fd;

short events;

short revents;

};

pollfd结构包含了要监视的event和发生的event,不再使用select“参数-值”传递的方式。同时,
pollfd并没有最大数量限制(但是数量过大后性能也是会下降)。 和select函数一样,poll返
回后,需要轮询pollfd来获取就绪的描述符。
从上面看,select和poll都需要在返回后,通过遍历文件描述符来获取已经就绪的socket。事
实上,同时连接的大量客户端在一时刻可能只有很少的处于就绪状态,因此随着监视的描
述符数量的增长,其效率也会线性下降。

3.epoll函数

int epoll_create(int size);
创建一个epoll的句柄。自从linux2.6.8之后,size参数是被忽略的。需要注意的是,当创建好
epoll句柄后,它就是会占用一个fd值,在linux下如果查看/proc/进程id/fd/,是能够看到这
个fd的,所以在使用完epoll后,必须调用close()关闭,否则可能导致fd被耗尽。
2. int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
epoll的事件注册函数,它不同于select()是在监听事件时告诉内核要监听什么类型的事件,而
是在这里先注册要监听的事件类型。
第一个参数是epoll_create()的返回值。
第二个参数表示动作,用三个宏来表示:
EPOLL_CTL_ADD:注册新的fd到epfd中;
EPOLL_CTL_MOD:修改已经注册的fd的监听事件;
EPOLL_CTL_DEL:从epfd中删除一个fd;
第三个参数是需要监听的fd。

第四个参数告诉内核需要监听什么。

struct epoll _event

{

 _uint32_t events;

epoll_data_t data;

}

events可以是以下几个宏的集合:
EPOLLIN :表示对应的文件描述符可以读(包括对端SOCKET正常关闭);
EPOLLOUT:表示对应的文件描述符可以写;
EPOLLPRI:表示对应的文件描述符有紧急的数据可读(这里应该表示有带外数据到来);
EPOLLERR:表示对应的文件描述符发生错误;
EPOLLHUP:表示对应的文件描述符被挂断;
EPOLLET: 将EPOLL设为边缘触发(Edge Triggered)模式,这是相对于水平触发(Level
Triggered)来说的。
EPOLLONESHOT:只监听一次事件,当监听完这次事件之后,如果还需要继续监听这个
socket的话,需要再次把这个socket加入到EPOLL队列里
3. int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout);
收集在epoll监控的事件中已经发送的事件。参数events是分配好的epoll_event结构体数组,
epoll将会把发生的事件赋值到events数组中(events不可以是空指针,内核只负责把数据复
制到这个events数组中,不会去帮助我们在用户态中分配内存)。maxevents告之内核这个
events有多大,这个 maxevents的值不能大于创建epoll_create()时的size,参数timeout是超时
时间(毫秒,0会立即返回,-1将不确定,也有说法说是永久阻塞)。如果函数调用成功,
返回对应I/O上已准备好的文件描述符数目,如返回0表示已超时。

程序如下所示:

select、epoll和poll_程序_06

select、epoll和poll_程序_07

select、epoll和poll_模型_08

select、epoll和poll_程序_09

select、epoll和poll_程序_10

4.三个函数的优缺点以及区别

(1)select函数

缺点:(1)每次调用select,都需要把fd集合从用户态拷贝到内核态,这个开销在fd很多时会很大(2)同时每次调用select都需要在内核遍历传递进来的所有fd,这个开销在fd很多时也很大(3)select支持的文件描述符数量太小了,默认是1024

(2)epoll函数

epoll是Linux下多路复用IO接口select/poll的增强版本,它能显著减少程序在大量并发连接中只有少量活跃的情况下的系统CPU利用率,因为它不会复用文件描述符集合来传递结果而迫使开发者每次等待事件之前都必须重新准备要被侦听的文件描述符集合,另一点原因就是获取事件的时候,它无须遍历整个被侦听的描述符集,只要遍历那些被内核IO事件异步唤醒而加入Ready队列的描述符集合就行了。epoll除了提供select/poll 那种IO事件的电平触发(Level Triggered)外,还提供了边沿触发(Edge Triggered),这就使得用户空间程序有可能缓存IO状态,减少epoll_wait/epoll_pwait的调用,提高应用程序效率。

 epoll既然是对select和poll的改进,就应该能避免上述的三个缺点。那epoll都是怎么解决的呢?在此之前,我们先看一下epoll和select和poll的调用接口上的不同,select和poll都只提供了一个函数——select或者poll函数。而epoll提供了三个函数,epoll_create,epoll_ctl和epoll_wait,epoll_create是创建一个epoll句柄;epoll_ctl是注册要监听的事件类型;epoll_wait则是等待事件的产生。

  对于第一个缺点,epoll的解决方案在epoll_ctl函数中。每次注册新的事件到epoll句柄中时(在epoll_ctl中指定EPOLL_CTL_ADD),会把所有的fd拷贝进内核,而不是在epoll_wait的时候重复拷贝。epoll保证了每个fd在整个过程中只会拷贝一次。

  对于第二个缺点,epoll的解决方案不像select或poll一样每次都把current轮流加入fd对应的设备等待队列中,而只在epoll_ctl时把current挂一遍(这一遍必不可少)并为每个fd指定一个回调函数,当设备就绪,唤醒等待队列上的等待者时,就会调用这个回调函数,而这个回调函数会把就绪的fd加入一个就绪链表)。epoll_wait的工作实际上就是在这个就绪链表中查看有没有就绪的fd(利用schedule_timeout()实现睡一会,判断一会的效果,和select实现中的第7步是类似的)。

  对于第三个缺点,epoll没有这个限制,它所支持的FD上限是最大可以打开文件的数目,这个数字一般远大于2048,举个例子,在1GB内存的机器上大约是10万左右,具体数目可以cat /proc/sys/fs/file-max察看,一般来说这个数目和系统内存关系很大。

总结:

(1)select,poll实现需要自己不断轮询所有fd集合,直到设备就绪,期间可能要睡眠和唤醒多次交替。而epoll其实也需要调用epoll_wait不断轮询就绪链表,期间也可能多次睡眠和唤醒交替,但是它是设备就绪时,调用回调函数,把就绪fd放入就绪链表中,并唤醒在epoll_wait中进入睡眠的进程。虽然都要睡眠和交替,但是select和poll在“醒着”的时候要遍历整个fd集合,而epoll在“醒着”的时候只要判断一下就绪链表是否为空就行了,这节省了大量的CPU时间。这就是回调机制带来的性能提升。

(2)select,poll每次调用都要把fd集合从用户态往内核态拷贝一次,并且要把current往设备等待队列中挂一次,而epoll只要一次拷贝,而且把current往等待队列上挂也只挂一次(在epoll_wait的开始,注意这里的等待队列并不是设备等待队列,只是一个epoll内部定义的等待队列)。这也能节省不少的开销。

相同点:
1)三者都需要在fd上注册用户关心的事件;
2)三者都要一个timeout参数指定超时时间;
不同点:
1)select:
a)select指定三个文件描述符集,分别是可读、可写和异常事件,所以不能更加细致地区分所有可能发生的事件;
b)select如果检测到就绪事件,会在原来的文件描述符上改动,以告知应用程序,文件描述符上发生了什么时间,所以再次调用select时,必须先重置文件描述符
c)select采用对所有注册的文件描述符集轮询的方式,会返回整个用户注册的事件集合,所以应用程序索引就绪文件的时间复杂度为O(n);
d)select允许监听的最大文件描述符个数通常有限制,一般是1024,如果大于1024,select的性能会急剧下降;
e)只能工作在LT模式。

2)poll:
a)poll把文件描述符和事件绑定,事件不但可以单独指定,而且可以是多个事件的按位或,这样更加细化了事件的注册,而且poll单独采用一个元素用来保存就绪返回时的结果,这样在下次调用poll时,就不用重置之前注册的事件;
b)poll采用对所有注册的文件描述符集轮询的方式,会返回整个用户注册的事件集合,所以应用程序索引就绪文件的时间复杂度为O(n)。
c)poll用nfds参数指定最多监听多少个文件描述符和事件,这个数能达到系统允许打开的最大文件描述符数目,即65535。
d)只能工作在LT模式。

3)epoll:
a)epoll把用户注册的文件描述符和事件放到内核当中的事件表中,提供了一个独立的系统调用epoll_ctl来管理用户的事件,而且epoll采用回调的方式,一旦有注册的文件描述符就绪,讲触发回调函数,该回调函数将就绪的文件描述符和事件拷贝到用户空间events所管理的内存,这样应用程序索引就绪文件的时间复杂度达到O(1)。
b)epoll_wait使用maxevents来制定最多监听多少个文件描述符和事件,这个数能达到系统允许打开的最大文件描述符数目,即65535;
c)不仅能工作在LT模式,而且还支持ET高效模式(即EPOLLONESHOT事件,读者可以自己查一下这个事件类型,对于epoll的线程安全有很好的帮助)。