计算机基本结构为 5 个部分,分别是运算器、控制器、存储器、输入设备、输出设备,这 5 个部分也被称为冯诺依曼模型。

运算器、控制器是在中央处理器里的,存储器就我们常见的内存,输入输出设备则是计算机外接的设备,比如键盘就是输入设备,显示器就是输出设备。

存储单元和输入输出设备要与中央处理器打交道的话,离不开总线。所以,它们之间的关系如下图:

3、内存、中央处理器、总线、输入输出设备_内存地址

一、内存

我们的程序和数据都是存储在内存,存储的区域是线性的?

在计算机数据存储中,存储数据的基本单位是字节(byte,1 字节等于 8 位(8 bit)。每一个字节都对应一个内存地址。

内存的地址是从 0 开始编号的,然后自增排列,最后一个地址为内存总字节数 - 1,这种结构好似我们程序里的数组,所以内存的读写任何一个数据的速度都是一样的。


二、中央处理器

中央处理器也就是我们常说的 CPU,32 位和 64 位 CPU 最主要区别在于一次能计算多少字节数据

  • 32 位 CPU 一次可以计算 4 个字节 4byte=31bit;
  • 64 位 CPU 一次可以计算 8 个字节 8byte=64bit;

这里的 32 位和 64 位,通常称为 CPU 的位宽。

之所以 CPU 要这样设计,是为了能计算更大的数值,如果是 8 位的 CPU,那么一次只能计算 1 个字节 ​​0~255​​ 范围内的数值,这样就无法一次完成计算 ​​10000 * 500​​ ,于是为了能一次计算大数的运算,CPU 需要支持多个 byte 一起计算,所以 CPU 位宽越大,可以计算的数值就越大,比如说 32 位 CPU 能计算的最大整数是 ​​4294967295​​。

CPU 内部还有一些组件,常见的有寄存器、控制单元和逻辑运算单元等。其中,控制单元负责控制 CPU 工作,逻辑运算单元负责计算,而寄存器可以分为多种类,每种寄存器的功能又不尽相同。

CPU 中的寄存器主要作用是存储计算时的数据,你可能好奇为什么有了内存还需要寄存器?原因很简单,因为内存离 CPU 太远了,而寄存器就在 CPU 里,还紧挨着控制单元和逻辑运算单元,自然计算时速度会很快。

常见的寄存器种类:

  • 通用寄存器:用来存放需要进行运算的数据,比如需要进行加和运算的两个数据。
  • 程序计数器:用来存储 CPU 要执行下一条指令「所在的内存地址」,注意不是存储了下一条要执行的指令,此时指令还在内存中,程序计数器只是存储了下一条指令的地址。
  • 指令寄存器:用来存放程序计数器指向的指令,也就是指令本身,指令被执行完成之前,指令都存储在这里。


三、总线

总线是用于 CPU 和内存以及其他设备之间的通信,总线可分为 3 种:

  • ​地址总线:用于指定 CPU 将要操作的内存地址;
  • 数据总线:用于读写内存的数据;
  • 控制总线:用于发送和接收信号,比如中断、设备复位等信号,CPU 收到信号后自然进行响应,这时也需要控制总线;

当 CPU 要读写内存数据的时候,一般需要通过下面这三个总线:

  • 首先要通过「地址总线」来指定内存的地址;
  • 然后通过「控制总线」控制是读或写命令;
  • 最后通过「数据总线」来传输数据;


​四、输入、输出设备

输入设备向计算机输入数据,计算机经过计算后,把数据输出给输出设备。期间,如果输入设备是键盘,按下按键时是需要和 CPU 进行交互的,这时就需要用到控制总线了。


思考:数据是如何通过线路传输的呢?

其实是通过操作电压,低电压表示 0,高压电压则表示 1。

如果构造了高低高这样的信号,其实就是 101 二进制数据,十进制则表示 5,如果只有一条线路,就意味着每次只能传递 1 bit 的数据,即 0 或 1,那么传输 101 这个数据,就需要 3 次才能传输完成,这样的效率非常低。

这样一位一位传输的方式,称为串行,下一个 bit 必须等待上一个 bit 传输完成才能进行传输。当然,想一次多传一些数据,增加线路即可,这时数据就可以并行传输。

为了避免低效率的串行传输的方式,线路的位宽最好一次就能访问到所有的内存地址。

CPU 要想操作的内存地址就需要地址总线:

  • 如果地址总线只有 1 条,那每次只能表示 「0 或 1」这两种地址,所以 CPU 能操作的内存地址最大数量为 2(2^1)个(注意,不要理解成同时能操作 2 个内存地址);
  • 如果地址总线有 2 条,那么能表示 00、01、10、11 这四种地址,所以 CPU 能操作的内存地址最大数量为 4(2^2)个。

那么,想要 CPU 操作 4G 大的内存,那么就需要 32 条地址总线,因为 ​​2 ^ 32 = 4G​​。

知道了线路位宽的意义后,我们再来看看 CPU 位宽。

CPU 的位宽最好不要小于线路位宽,比如 32 位 CPU 控制 40 位宽的地址总线和数据总线的话,工作起来就会非常复杂且麻烦,所以 32 位的 CPU 最好和 32 位宽的线路搭配,因为 32 位 CPU 一次最多只能操作 32 位宽的地址总线和数据总线。

如果用 32 位 CPU 去加和两个 64 位大小的数字,就需要把这 2 个 64 位的数字分成 2 个低位 32 位数字和 2 个高位 32 位数字来计算,先加个两个低位的 32 位数字,算出进位,然后加和两个高位的 32 位数字,最后再加上进位,就能算出结果了,可以发现 32 位 CPU 并不能一次性计算出加和两个 64 位数字的结果。

对于 64 位 CPU 就可以一次性算出加和两个 64 位数字的结果,因为 64 位 CPU 可以一次读入 64 位的数字,并且 64 位 CPU 内部的逻辑运算单元也支持 64 位数字的计算。

但是并不代表 64 位 CPU 性能比 32 位 CPU 高很多,很少应用需要算超过 32 位的数字,所以如果计算的数额不超过 32 位数字的情况下,32 位和 64 位 CPU 之间没什么区别的,只有当计算超过 32 位数字的情况下,64 位的优势才能体现出来

另外,32 位 CPU 最大只能操作 4GB 内存,就算你装了 8 GB 内存条,也没用。而 64 位 CPU 寻址范围则很大,理论最大的寻址空间为 ​​2^64​​。