在Windows下使用redis
1、服务器下载:redis官方下载地址
在cmd中执行 通过配置文件启动redis服务器
验证
2、下载可视化工具:redis-desktop-manager
3、如果可视化工具连接不上redis服务端。检查你是否设置了密码
4、redis特性:
Redis不支持自定义数据库的名字,每个数据库都以编号命名,开发者必须自己记录哪些数据库存储了哪些数据;
Redis不支持为每个数据库设置不同的访问密码,所以一个客户端要么可以访问全部数据库,要么连一个数据库也没有权限访问;
多个数据库之间并不是完全隔离的,比如FLUSHALL命令可以清空一个Redis实例中所有数据库中的数据;
Redis非常轻量级,一个空Redis实例占用的内在只有1M左右,所以不用担心多个Redis实例会额外占用很多内存。
这些数据库更像是一种命名空间,而不适宜存储不同应用程序的数据;
5、应用场景:
缓存——热数据
热点数据(经常会被查询,但是不经常被修改或者删除的数据)
计数器
诸如统计点击数等应用。由于单线程,可以避免并发问题,保证不会出错,而且100%毫秒级性能!爽。
命令:INCRBY
当然爽完了,别忘记持久化,毕竟是redis只是存了内存!
队列
- 相当于消息系统,ActiveMQ,RocketMQ等工具类似,但是个人觉得简单用一下还行,如果对于数据一致性要求高的话还是用RocketMQ等专业系统。
- 由于redis把数据添加到队列是返回添加元素在队列的第几位,所以可以做判断用户是第几个访问这种业务
- 队列不仅可以把并发请求变成串行,并且还可以做队列或者栈使用
位操作(大数据处理)
用于数据量上亿的场景下,例如几亿用户系统的签到,去重登录次数统计,某用户是否在线状态等等。
想想一下腾讯10亿用户,要几个毫秒内查询到某个用户是否在线,你能怎么做?千万别说给每个用户建立一个key,然后挨个记(你可以算一下需要的内存会很恐怖,而且这种类似的需求很多,腾讯光这个得多花多少钱。。)好吧。这里要用到位操作——使用setbit、getbit、bitcount命令。
原理是:
redis内构建一个足够长的数组,每个数组元素只能是0和1两个值,然后这个数组的下标index用来表示我们上面例子里面的用户id(必须是数字哈),那么很显然,这个几亿长的大数组就能通过下标和元素值(0和1)来构建一个记忆系统,上面我说的几个场景也就能够实现。用到的命令是:setbit、getbit、bitcount
分布式锁与单线程机制
- 验证前端的重复请求(可以自由扩展类似情况),可以通过redis进行过滤:每次请求将request Ip、参数、接口等hash作为key存储redis(幂等性请求),设置多长时间有效期,然后下次请求过来的时候先在redis中检索有没有这个key,进而验证是不是一定时间内过来的重复提交
- 秒杀系统,基于redis是单线程特征,防止出现数据库“爆破”
- 全局增量ID生成,类似“秒杀”
最新列表
例如新闻列表页面最新的新闻列表,如果总数量很大的情况下,尽量不要使用select a from A limit 10这种low货,尝试redis的 LPUSH命令构建List,一个个顺序都塞进去就可以啦。不过万一内存清掉了咋办?也简单,查询不到存储key的话,用mysql查询并且初始化一个List到redis中就好了。
排行榜
谁得分高谁排名往上。命令:ZADD(有续集,sorted set)
最近在研究股票,发现量化交易是个非常好的办法,通过臆想出来规律,用程序对历史数据进行验证,来判断这个臆想出来的规律是否有效
6、优缺点
(1) 速度快,因为数据存在内存中,类似于HashMap,HashMap的优势就是查找和操作的时间复杂度都是O(1)
(2) 支持丰富数据类型,支持string,list,set,sorted set,hash
(3) 支持事务,操作都是原子性,所谓的原子性就是对数据的更改要么全部执行,要么全部不执行
(4) 丰富的特性:可用于缓存,消息,按key设置过期时间,过期后将会自动删除
(5)redis可以持久化其数据
redis常见性能问题和解决方案:
(1) Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件
(2) 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次
(3) 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内
(4) 尽量避免在压力很大的主库上增加从库
(5) 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3…
这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。
MySQL里有2000w数据,redis中只存20w的数据,如何保证redis中的数据都是热点数据
相关知识:redis 内存数据集大小上升到一定大小的时候,就会施行数据淘汰策略。redis 提供 6种数据淘汰策略:
voltile-lru:从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰
volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰
volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰
allkeys-lru:从数据集(server.db[i].dict)中挑选最近最少使用的数据淘汰
allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰
no-enviction(驱逐):禁止驱逐数据s