DeepLabv3+: Encoder-Decoder with Atrous Separable Convolution
PDF: ​​​https://arxiv.org/pdf/1802.02611.pdf​

​​ PyTorch代码: ​​https://github.com/shanglianlm0525/PyTorch-Networks​

1 创新点

  • 为了融合多尺度信息,论文引入全新的encoder-decoder架构,使用DeepLabv3作为encoder模块,并添加了一个简单却有效的decoder模块
  • 在我们提出的encoder-decoder架构中,可通过扩张卷积直接控制提取encoder特征的分辨率,用于平衡精度和运行时间
  • 论文将Xception结构应用于分割任务中,在ASPP和decoder模块中加入深度分离卷积,获得到强大又快速的模型

2 网络结构

使用DeepLabv3 作为 encoder, 同时加入轻量级的ecoder模块

语义分割论文:DeepLabv3+: Encoder-Decoder with Atrous Separable Convolution及其Pytorch实现_卷积

3 Xception 改进

  • Entry flow 保持不变,但是添加了更多的 Middle flow。
  • 所有的 max pooling 被 depthwise separable convolutions 替代。
  • 在每个 3x3 depthwise convolution 之外,增加了 batch normalization 和 ReLU。
  • 语义分割论文:DeepLabv3+: Encoder-Decoder with Atrous Separable Convolution及其Pytorch实现_2d_02

4 实验结果

4-1 PASCAL VOC 2012

语义分割论文:DeepLabv3+: Encoder-Decoder with Atrous Separable Convolution及其Pytorch实现_2d_03

4-2 Cityscapes

语义分割论文:DeepLabv3+: Encoder-Decoder with Atrous Separable Convolution及其Pytorch实现_pytorch_04

PyTorch代码:

# !/usr/bin/env python
# -- coding: utf-8 --
# @Time : 2020/9/25 12:50
# @Author : liumin
# @File : DeeplabV3.py

import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.models.resnet import resnet18, resnet34, resnet50, resnet101, resnet152

class ResNet(nn.Module):
def __init__(self, backbone='resnet50', pretrained_path=None):
super().__init__()
if backbone == 'resnet18':
backbone = resnet18(pretrained=not pretrained_path)
self.final_out_channels = 256
self.low_level_inplanes = 64
elif backbone == 'resnet34':
backbone = resnet34(pretrained=not pretrained_path)
self.final_out_channels = 256
self.low_level_inplanes = 64
elif backbone == 'resnet50':
backbone = resnet50(pretrained=not pretrained_path)
self.final_out_channels = 1024
self.low_level_inplanes = 256
elif backbone == 'resnet101':
backbone = resnet101(pretrained=not pretrained_path)
self.final_out_channels = 1024
self.low_level_inplanes = 256
else: # backbone == 'resnet152':
backbone = resnet152(pretrained=not pretrained_path)
self.final_out_channels = 1024
self.low_level_inplanes = 256
if pretrained_path:
backbone.load_state_dict(torch.load(pretrained_path))


self.early_extractor = nn.Sequential(*list(backbone.children())[:5])
self.later_extractor = nn.Sequential(*list(backbone.children())[5:7])

conv4_block1 = self.later_extractor[-1][0]

conv4_block1.conv1.stride = (1, 1)
conv4_block1.conv2.stride = (1, 1)
conv4_block1.downsample[0].stride = (1, 1)

def forward(self, x):
x = self.early_extractor(x)
out = self.later_extractor(x)
return out,x

class _ASPPModule(nn.Module):
def __init__(self, inplanes, planes, kernel_size, padding, dilation):
super(_ASPPModule, self).__init__()
self.atrous_conv = nn.Conv2d(inplanes, planes, kernel_size=kernel_size,
stride=1, padding=padding, dilation=dilation, bias=False)
self.bn = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)

self._init_weight()

def forward(self, x):
x = self.atrous_conv(x)
x = self.bn(x)

return self.relu(x)

def _init_weight(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
torch.nn.init.kaiming_normal_(m.weight)
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()

class ASPP(nn.Module):
def __init__(self, inplanes=2048, output_stride=16):
super(ASPP, self).__init__()
if output_stride == 16:
dilations = [1, 6, 12, 18]
elif output_stride == 8:
dilations = [1, 12, 24, 36]
else:
raise NotImplementedError

self.aspp1 = _ASPPModule(inplanes, 256, 1, padding=0, dilation=dilations[0])
self.aspp2 = _ASPPModule(inplanes, 256, 3, padding=dilations[1], dilation=dilations[1])
self.aspp3 = _ASPPModule(inplanes, 256, 3, padding=dilations[2], dilation=dilations[2])
self.aspp4 = _ASPPModule(inplanes, 256, 3, padding=dilations[3], dilation=dilations[3])

self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
nn.Conv2d(inplanes, 256, 1, stride=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True))
self.conv1 = nn.Conv2d(1280, 256, 1, bias=False)
self.bn1 = nn.BatchNorm2d(256)
self.relu = nn.ReLU(inplace=True)
self.dropout = nn.Dropout(0.5)
self._init_weight()

def forward(self, x):
x1 = self.aspp1(x)
x2 = self.aspp2(x)
x3 = self.aspp3(x)
x4 = self.aspp4(x)
x5 = self.global_avg_pool(x)
x5 = F.interpolate(x5, size=x4.size()[2:], mode='bilinear', align_corners=True)
x = torch.cat((x1, x2, x3, x4, x5), dim=1)

x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
return self.dropout(x)

def _init_weight(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
# n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
# m.weight.data.normal_(0, math.sqrt(2. / n))
torch.nn.init.kaiming_normal_(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.Linear):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)

class Decoder(nn.Module):
def __init__(self, num_classes, low_level_inplanes=256):
super(Decoder, self).__init__()
self.conv1 = nn.Conv2d(low_level_inplanes, 48, 1, bias=False)
self.bn1 = nn.BatchNorm2d(48)
self.relu = nn.ReLU()
self.last_conv = nn.Sequential(nn.Conv2d(304, 256, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Dropout(0.5),
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Dropout(0.1),
nn.Conv2d(256, num_classes, kernel_size=1, stride=1))
self._init_weight()


def forward(self, x, low_level_feat):
low_level_feat = self.conv1(low_level_feat)
low_level_feat = self.bn1(low_level_feat)
low_level_feat = self.relu(low_level_feat)

x = F.interpolate(x, size=low_level_feat.size()[2:], mode='bilinear', align_corners=True)
x = torch.cat((x, low_level_feat), dim=1)
x = self.last_conv(x)
return x

def _init_weight(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
# n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
# m.weight.data.normal_(0, math.sqrt(2. / n))
torch.nn.init.kaiming_normal_(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.Linear):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)


class DeepLabv3Plus(nn.Module):
def __init__(self, num_classes=None):
super().__init__()
self.num_classes = num_classes

self.backbone = ResNet('resnet50', None)
self.aspp = ASPP(inplanes=self.backbone.final_out_channels)
self.decoder = Decoder(self.num_classes, self.backbone.low_level_inplanes)

def forward(self, imgs, labels=None, mode='infer', **kwargs):
x, low_level_feat = self.backbone(imgs)
x = self.aspp(x)
x = self.decoder(x, low_level_feat)
outputs = F.interpolate(x, size=imgs.size()[2:], mode='bilinear', align_corners=True)
return outputs

if __name__ == '__main__':
model = DeepLabv3Plus(num_classes=19)
print(model)

input = torch.randn(2,3,1024,2048)
output = model(input)
print(output.shape)