单元最短路径

问题分析

  • 可参考图的应用——最短路径

Java 源代码

内含详细注释

package Dijkstra;

public class Dijkstra {

public static void main(String[] args) {
float max = Float.MAX_VALUE;
float[][] a = new float[][] {{0, 0, 0, 0, 0, 0},
{0, max, 10, max, 30, 100},
{0, max, max, 60, max, max},
{0, max, max, max, max, 20},
{0, max, max, 10, max, 50},
{0, max, max, max, max, max}};
int v = 1;
int n = 5;
float[] dist = new float[n + 1];
int[] prev = new int[n + 1];
dijkstra(v, a, dist, prev);
for (int i = 1; i <= n; i++) {
if (i != v) {
System.out.println(v + "->" + i + " : " + dist[i]);
}
}
}

/**
* 单元最短路径问题的 Dijkstra 算法
* @param v: 源顶点
* @param a:邻接矩阵
* @param dist:存放最短路径
* @param prev:存放当前顶点的前一个顶点
*/
public static void dijkstra(int v, float[][] a, float[] dist, int[] prev) {

int n = dist.length - 1;
if (v < 1 || v > n) return;
// 代表当前顶点是否被添加到集合S中
boolean[] s = new boolean[n + 1];
// 初始化
for (int i = 1; i <= n; i++) {
dist[i] = a[v][i];
s[i] = false;
if (dist[i] == Float.MAX_VALUE) prev[i] = 0;
else prev[i] = v;
}
dist[v] = 0;
s[v] = true;
for (int i = 1; i < n; i++) {
float temp = Float.MAX_VALUE;
int u = v;
for (int j = 1; j <= n; j++) { // 寻找不在S中的最小值
if (!s[j] && (dist[j] < temp)) { // 从剩余顶点选择
u = j;
temp = dist[j];
}
}
// 加入s中
s[u] = true;
for (int j = 1; j <= n; j++) { // 更新dist
if ((!s[j]) && (a[u][j] < Float.MAX_VALUE)){
float newdist = dist[u] + a[u][j];
if (newdist < dist[j]) {
dist[j] = newdist;
prev[j] = u;
}
}
}
}
}
}
1->2 : 10.0
1->3 : 40.0
1->4 : 30.0
1->5 : 60.0