AQS框架

基础
AbstractQueuedSynchronizer抽象同步队列简称AQS,它是实现同步器的基础组件,如常用的ReentrantLock、Semaphore、CountDownLatch等。
AQS定义了一套多线程访问共享资源的同步模板,解决了实现同步器时涉及的大量细节问题,能够极大地减少实现工作,虽然大多数开发者可能永远不会使用AQS实现自己的同步器(JUC包下提供的同步器基本足够应对日常开发),但是知道AQS的原理对于架构设计还是很有帮助的,面试还可以吹吹牛,下面是AQS的组成结构。

三部分组成:volatile int state同步状态、Node组成的CLH队列、ConditionObject条件变量(包含Node组成的条件单向队列)。
状态
getState():返回同步状态setState(int newState):设置同步状态compareAndSetState(int expect, int update):使用CAS设置同步状态isHeldExclusively():当前线程是否持有资源
独占资源(不响应线程中断)
tryAcquire(int arg):独占式获取资源,子类实现acquire(int arg):独占式获取资源模板tryRelease(int arg):独占式释放资源,子类实现release(int arg):独占式释放资源模板
共享资源(不响应线程中断)
tryAcquireShared(int arg):共享式获取资源,返回值大于等于0则表示获取成功,否则获取失败,子类实现acquireShared(int arg):共享形获取资源模板tryReleaseShared(int arg):共享式释放资源,子类实现releaseShared(int arg):共享式释放资源模板
同步状态
在AQS中维护了一个同步状态变量state,getState函数获取同步状态,setState、compareAndSetState函数修改同步状态,对于AQS来说,线程同步的关键是对state的操作,可以说获取、释放资源是否成功都是由state决定的,比如state>0代表可获取资源,否则无法获取,所以state的具体语义由实现者去定义,现有的ReentrantLock、ReentrantReadWriteLock、Semaphore、CountDownLatch定义的state语义都不一样。
- ReentrantLock的state用来表示是否有锁资源
- ReentrantReadWriteLock的state高16位代表读锁状态,低16位代表写锁状态
- Semaphore的state用来表示可用信号的个数
- CountDownLatch的state用来表示计数器的值
CLH队列
CLH是AQS内部维护的FIFO(先进先出)双端双向队列(方便尾部节点插入),基于链表数据结构,当一个线程竞争资源失败,就会将等待资源的线程封装成一个Node节点,通过CAS原子操作插入队列尾部,最终不同的Node节点连接组成了一个CLH队列,所以说AQS通过CLH队列管理竞争资源的线程,个人总结CLH队列具有如下几个优点:
- 先进先出保证了公平性
- 非阻塞的队列,通过自旋锁和CAS保证节点插入和移除的原子性,实现无锁快速插入
- 采用了自旋锁思想,所以CLH也是一种基于链表的可扩展、高性能、公平的自旋锁
Node内部类
Node是AQS的内部类,每个等待资源的线程都会封装成Node节点组成CLH队列、等待队列,所以说Node是非常重要的部分,理解它是理解AQS的第一步。
nextWaiter特殊标记
Node在CLH队列时,nextWaiter表示共享式或独占式标记Node在条件队列时,nextWaiter表示下个Node节点指针
流程概述
线程获取资源失败,封装成Node节点从CLH队列尾部入队并阻塞线程,某线程释放资源时会把CLH队列首部Node节点关联的线程唤醒(此处的首部是指第二个节点,后面会细说),再次获取资源。

入队
获取资源失败的线程需要封装成Node节点,接着尾部入队,在AQS中提供addWaiter函数完成Node节点的创建与入队。
/**
* @description: Node节点入队-CLH队列
* @param mode 标记Node.EXCLUSIVE独占式 or Node.SHARED共享式
*/
private Node addWaiter(Node mode) {
// 根据当前线程创建节点,等待状态为0
Node node = new Node(Thread.currentThread(), mode);
// 获取尾节点
Node pred = tail;
if (pred != null) {
// 如果尾节点不等于null,把当前节点的前驱节点指向尾节点
node.prev = pred;
// 通过CAS把尾节点指向当前节点
if (compareAndSetTail(pred, node)) {
// 之前尾节点的下个节点指向当前节点
pred.next = node;
return node;
}
}
// 如果添加失败或队列不存在,执行end函数
enq(node);
return node;
}
添加节点的时候,如果从CLH队列已经存在,通过CAS快速将当前节点添加到队列尾部,如果添加失败或队列不存在,则指向enq函数自旋入队。
/**
* @description: 自旋cas入队
* @param node 节点
*/
private Node enq(final Node node) {
for (;;) { //循环
//获取尾节点
Node t = tail;
if (t == null) {
//如果尾节点为空,创建哨兵节点,通过cas把头节点指向哨兵节点
if (compareAndSetHead(new Node()))
//cas成功,尾节点指向哨兵节点
tail = head;
} else {
//当前节点的前驱节点设指向之前尾节点
node.prev = t;
//cas设置把尾节点指向当前节点
if (compareAndSetTail(t, node)) {
//cas成功,之前尾节点的下个节点指向当前节点
t.next = node;
return t;
}
}
}
}
通过自旋CAS尝试往队列尾部插入节点,直到成功,自旋过程如果发现CLH队列不存在时会初始化CLH队列,入队过程流程如下图:

第一次循环
- 刚开始C L H队列不存在,head与tail都指向null
- 要初始化C L H队列,会创建一个哨兵节点,head与tail都指向哨兵节点
第二次循环
- 当前线程节点的前驱节点指向尾部节点(哨兵节点)
- 设置当前线程节点为尾部,tail指向当前线程节点
- 前尾部节点的后驱节点指向当前线程节点(当前尾部节点)
最后结合addWaiter与enq函数的入队流程图如下

出队
CLH队列中的节点都是获取资源失败的线程节点,当持有资源的线程释放资源时,会将head.next指向的线程节点唤醒(CLH队列的第二个节点),如果唤醒的线程节点获取资源成功,线程节点清空信息设置为头部节点(新哨兵节点),原头部节点出队(原哨兵节点)acquireQueued函数中的部分代码
//1.获取前驱节点
final Node p = node.predecessor();
//如果前驱节点是首节点,获取资源(子类实现)
if (p == head && tryAcquire(arg)) {
//2.获取资源成功,设置当前节点为头节点,清空当前节点的信息,把当前节点变成哨兵节点
setHead(node);
//3.原来首节点下个节点指向为null
p.next = null; // help GC
//4.非异常状态,防止指向finally逻辑
failed = false;
//5.返回线程中断状态
return interrupted;
}
private void setHead(Node node) {
//节点设置为头部
head = node;
//清空线程
node.thread = null;
//清空前驱节点
node.prev = null;
}
只需要关注1~3步骤即可,过程非常简单,假设获取资源成功,更换头部节点,并把头部节点的信息清除变成哨兵节点,注意这个过程是不需要使用CAS来保证,因为只有一个线程能够成功获取到资源。

条件变量
Object的wait、notify函数是配合Synchronized锁实现线程间同步协作的功能,A Q S的ConditionObject条件变量也提供这样的功能,通过ConditionObject的await和signal两类函数完成。不同于Synchronized锁,一个A Q S可以对应多个条件变量,而Synchronized只有一个。

如上图所示,ConditionObject内部维护着一个单向条件队列,不同于C H L队列,条件队列只入队执行await的线程节点,并且加入条件队列的节点,不能在C H L队列, 条件队列出队的节点,会入队到C H L队列。
当某个线程执行了ConditionObject的await函数,阻塞当前线程,线程会被封装成Node节点添加到条件队列的末端,其他线程执行ConditionObject的signal函数,会将条件队列头部线程节点转移到C H L队列参与竞争资源,具体流程如下图

模板方法
AQS采用了模板方法设计模式,提供了两类模板,一类是独占式模板,另一类是共享形模式,对应的模板函数如下
- 独占式
acquire获取资源release释放资源
- 共享式
acquireShared获取资源releaseShared释放资源
独占式获取资源
acquire是个模板函数,模板流程就是线程获取共享资源,如果获取资源成功,线程直接返回,否则进入CLH队列,直到获取资源成功为止,且整个过程忽略中断的影响,acquire函数代码如下

- 执行tryAcquire函数,tryAcquire是由子类实现,代表获取资源是否成功,如果资源获取失败,执行下面的逻辑
- 执行addWaiter函数(前面已经介绍过),根据当前线程创建出独占式节点,并入队CLH队列
- 执行acquireQueued函数,自旋阻塞等待获取资源
- 如果acquireQueued函数中获取资源成功,根据线程是否被中断状态,来决定执行线程中断逻辑

acquire函数的大致流程都清楚了,下面来分析下acquireQueued函数,线程封装成节点后,是如何自旋阻塞等待获取资源的,代码如下:
/**
* @description: 自旋机制等待获取资源
* @param node
* @param arg
* @return: boolean
*/
final boolean acquireQueued(final Node node, int arg) {
//异常状态,默认是
boolean failed = true;
try {
//该线程是否中断过,默认否
boolean interrupted = false;
for (;;) {//自旋
//获取前驱节点
final Node p = node.predecessor();
//如果前驱节点是首节点,获取资源(子类实现)
if (p == head && tryAcquire(arg)) {
//获取资源成功,设置当前节点为头节点,清空当前节点的信息,把当前节点变成哨兵节点
setHead(node);
//原来首节点下个节点指向为null
p.next = null; // help GC
//非异常状态,防止指向finally逻辑
failed = false;
//返回线程中断状态
return interrupted;
}
/**
* 如果前驱节点不是首节点,先执行shouldParkAfterFailedAcquire函数,shouldParkAfterFailedAcquire做了三件事
* 1.如果前驱节点的等待状态是SIGNAL,返回true,执行parkAndCheckInterrupt函数,返回false
* 2.如果前驱节点的等大状态是CANCELLED,把CANCELLED节点全部移出队列(条件节点)
* 3.以上两者都不符合,更新前驱节点的等待状态为SIGNAL,返回false
*/
if (shouldParkAfterFailedAcquire(p, node) &&
//使用LockSupport类的静态方法park挂起当前线程,直到被唤醒,唤醒后检查当前线程是否被中断,返回该线程中断状态并重置中断状态
parkAndCheckInterrupt())
//该线程被中断过
interrupted = true;
}
} finally {
// 尝试获取资源失败并执行异常,取消请求,将当前节点从队列中移除
if (failed)
cancelAcquire(node);
}
}
一图胜千言,核心流程图如下:

独占式释放资源
有获取资源,自然就少不了释放资源,A Q S中提供了release模板函数来释放资源,模板流程就是线程释放资源成功,唤醒CLH队列的第二个线程节点(首节点的下个节点),代码如下
/**
* @description: 独占式-释放资源模板函数
* @param arg
* @return: boolean
*/
public final boolean release(int arg) {
if (tryRelease(arg)) {//释放资源成功,tryRelease子类实现
//获取头部线程节点
Node h = head;
if (h != null && h.waitStatus != 0) //头部线程节点不为null,并且等待状态不为0
//唤醒CHL队列第二个线程节点
unparkSuccessor(h);
return true;
}
return false;
}
private void unparkSuccessor(Node node) {
//获取节点等待状态
int ws = node.waitStatus;
if (ws < 0)
//cas更新节点状态为0
compareAndSetWaitStatus(node, ws, 0);
//获取下个线程节点
Node s = node.next;
if (s == null || s.waitStatus > 0) { //如果下个节点信息异常,从尾节点循环向前获取到正常的节点为止,正常情况不会执行
s = null;
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0)
s = t;
}
if (s != null)
//唤醒线程节点
LockSupport.unpark(s.thread);
}
}
release逻辑非常简单,流程图如下:

共享式获取资源
acquireShared是个模板函数,模板流程就是线程获取共享资源,如果获取到资源,线程直接返回,否则进入CLH队列,直到获取到资源为止,且整个过程忽略中断的影响,acquireShared函数代码如下
/**
* @description: 共享式-获取资源模板函数
* @param arg
* @return: void
*/
public final void acquireShared(int arg) {
/**
* 1.负数表示失败
* 2.0表示成功,但没有剩余可用资源
* 3.正数表示成功且有剩余资源
*/
if (tryAcquireShared(arg) < 0) //获取资源失败,tryAcquireShared子类实现
//自旋阻塞等待获取资源
doAcquireShared(arg);
}
doAcquireShared函数与独占式的acquireQueued函数逻辑基本一致,唯一的区别就是下图红框部分

- 节点的标记是共享式
- 获取资源成功,还会唤醒后续资源,因为资源数可能
>0,代表还有资源可获取,所以需要做后续线程节点的唤醒
共享式释放资源
AQS中提供了releaseShared模板函数来释放资源,模板流程就是线程释放资源成功,唤醒CHL队列的第二个线程节点(首节点的下个节点),代码如下
/**
* @description: 共享式-释放资源模板函数
* @param arg
* @return: boolean
*/
public final boolean releaseShared(int arg) {
if (tryReleaseShared(arg)) {//释放资源成功,tryReleaseShared子类实现
//唤醒后继节点
doReleaseShared();
return true;
}
return false;
}
private void doReleaseShared() {
for (;;) {
//获取头节点
Node h = head;
if (h != null && h != tail) {
int ws = h.waitStatus;
if (ws == Node.SIGNAL) {//如果头节点等待状态为SIGNAL
if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))//更新头节点等待状态为0
continue; // loop to recheck cases
//唤醒头节点下个线程节点
unparkSuccessor(h);
}
//如果后继节点暂时不需要被唤醒,更新头节点等待状态为PROPAGATE
else if (ws == 0 &&
!compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
continue;
}
if (h == head)
break;
}
}
与独占式释放资源区别不大,都是唤醒头节点的下个节点。
什么是AQS?
AQS 的全称是 AbstractQueuedSynchronizer,即抽象队列同步器。是Java并发工具的基础,采用乐观锁,通过CAS与自旋轻量级的获取锁。维护了一个volatile int state(代表共享资源)和一个FIFO线程等待队列(多线程争用资源被阻塞时会进入此队列)。很多JUC包,比如ReentrantLock、Semaphore、CountDownLatch等并发类均是继承AQS,通过AQS的模板方法,来实现的。

核心思想
- 若请求的共享资源空闲,则将当前请求的线程设置为有效的工作线程,并将共享资源设置为锁定状态
- 若共享资源被占用,则需要阻塞等待唤醒机制保证锁的分配
工作原理
AQS = 同步状态(volatile int state) + 同步队列(即等待队列,FIFO的CLH队列) + 条件队列(ConditionObject)
- state:代表共享资源。
volatile保证并发读,CAS保证并发写 - 同步队列(即等待队列,CLH队列):是CLH变体的虚拟双向队列(先进先出FIFO)来等待获取共享资源。当前线程可以通过signal和signalAll将条件队列中的节点转移到同步队列中
- 条件队列(ConditionObject):当前线程存在于同步队列的头节点,可以通过await从同步队列转移到条件队列中
实现原理
- 通过CLH队列的变体:FIFO双向队列实现的
- 每个请求资源的线程被包装成一个节点来实现锁的分配
- 通过
volatile的int类型的成员变量state表示同步状态 - 通过FIFO队列完成资源获取的排队工作
- 通过CAS完成对
state的修改
















