2024-12-07:找出所有稳定的二进制数组 Ⅰ。用go语言,给定三个正整数 zero、one 和 limit,定义一个稳定的二进制数组需要满足以下条件:
数组中 0 的数量为 zero,1 的数量为 one,且每个长度超过 limit 的子数组都必须同时包含 0 和 1。
求出满足条件的稳定二进制数组的总数,结果需对 1000000007 取模后返回。
输入:zero = 1, one = 1, limit = 2。
输出:2。
解释:
两个稳定的二进制数组为 [1,0] 和 [0,1] ,两个数组都有一个 0 和一个 1 ,且没有子数组长度大于 2 。
答案2024-12-07:
chatgpt
题目来自leetcode3129。
大体步骤如下:
1.初始化变量:
- 初始化动态规划数组 dp,它是一个三维数组,dp[i][j][k]表示包含i个 0 和j个 1 的子数组中,最后一个数字是k的所有稳定二进制数组的数量。
- 初始化模数 mod为 1e9 + 7,用于取模操作。
2.动态规划填表:
- 遍历填充 dp数组,根据限制条件计算每个子问题的解。
- 内层循环处理 0和1的数量,更新dp[i][j][0]和dp[i][j][1]的值,考虑超过 limit 的限制情况。
3.返回结果:
- 最后返回 (dp[zero][one][0] + dp[zero][one][1]) % mod,即得到满足条件的稳定二进制数组的总数。
总的时间复杂度:
- 填表部分需要二重循环遍历 zero和one,时间复杂度为 O(zero * one),内部还有限制条件的判断,整体时间复杂度为 O(zero * one)。
- 计算结果的取模操作时间复杂度为 O(1)。
总的额外空间复杂度:
- 动态规划数组 dp的空间复杂度为 O(zero * one),因此总的额外空间复杂度为 O(zero * one)。
Go完整代码如下:
package main
import (
	"fmt"
)
func numberOfStableArrays(zero int, one int, limit int) int {
	dp := make([][][2]int, zero+1)
	mod := int(1e9 + 7)
	for i := 0; i <= zero; i++ {
		dp[i] = make([][2]int, one+1)
	}
	for i := 0; i <= min(zero, limit); i++ {
		dp[i][0][0] = 1
	}
	for j := 0; j <= min(one, limit); j++ {
		dp[0][j][1] = 1
	}
	for i := 1; i <= zero; i++ {
		for j := 1; j <= one; j++ {
			if i > limit {
				dp[i][j][0] = dp[i-1][j][0] + dp[i-1][j][1] - dp[i-limit-1][j][1]
			} else {
				dp[i][j][0] = dp[i-1][j][0] + dp[i-1][j][1]
			}
			dp[i][j][0] = (dp[i][j][0]%mod + mod) % mod
			if j > limit {
				dp[i][j][1] = dp[i][j-1][1] + dp[i][j-1][0] - dp[i][j-limit-1][0]
			} else {
				dp[i][j][1] = dp[i][j-1][1] + dp[i][j-1][0]
			}
			dp[i][j][1] = (dp[i][j][1]%mod + mod) % mod
		}
	}
	return (dp[zero][one][0] + dp[zero][one][1]) % mod
}
func main() {
	zero := 1
	one := 1
	limit := 2
	fmt.Println(numberOfStableArrays(zero, one, limit))
}
Rust完整代码如下:
const MOD: i64 = 1000000007;
fn min(x: i32, y: i32) -> i32 {
    if x < y {
        x
    } else {
        y
    }
}
fn number_of_stable_arrays(zero: i32, one: i32, limit: i32) -> i64 {
    let mut dp = vec![vec![[0, 0]; one as usize + 1]; zero as usize + 1];
    for i in 0..=zero {
        dp[i as usize][0][0] = 1;
    }
    for j in 0..=one {
        dp[0][j as usize][1] = 1;
    }
    for i in 1..=zero {
        for j in 1..=one {
            if i > limit {
                dp[i as usize][j as usize][0] = (dp[i as usize - 1][j as usize][0]
                    + dp[i as usize - 1][j as usize][1]
                    - dp[(i - limit - 1) as usize][j as usize][1])
                    % MOD;
            } else {
                dp[i as usize][j as usize][0] =
                    (dp[i as usize - 1][j as usize][0] + dp[i as usize - 1][j as usize][1]) % MOD;
            }
            if dp[i as usize][j as usize][0] < 0 {
                dp[i as usize][j as usize][0] += MOD;
            }
            if j > limit {
                dp[i as usize][j as usize][1] = (dp[i as usize][j as usize - 1][1]
                    + dp[i as usize][j as usize - 1][0]
                    - dp[i as usize][j as usize - limit as usize - 1][0])
                    % MOD;
            } else {
                dp[i as usize][j as usize][1] =
                    (dp[i as usize][j as usize - 1][1] + dp[i as usize][j as usize - 1][0]) % MOD;
            }
            if dp[i as usize][j as usize][1] < 0 {
                dp[i as usize][j as usize][1] += MOD;
            }
        }
    }
    (dp[zero as usize][one as usize][0] + dp[zero as usize][one as usize][1]) % MOD
}
fn main() {
    let zero = 1;
    let one = 1;
    let limit = 2;
    println!("{}", number_of_stable_arrays(zero, one, limit));
}
                
 
 
                     
            
        













 
                    

 
                 
                    