本节重点介绍 :
- summary数据结构
- 分位值库 https://github.com/beorn7/perks
源码解读
summary数据结构
- 源码位置 D:\go_path\pkg\mod\github.com\prometheus\client_golang@v1.9.0\prometheus\summary.go
type summary struct {
selfCollector
bufMtx sync.Mutex // Protects hotBuf and hotBufExpTime.
mtx sync.Mutex // Protects every other moving part.
// Lock bufMtx before mtx if both are needed.
desc *Desc
objectives map[float64]float64 // 分位数,告诉Summary要统计哪些分位的值 key是分位数,value是浮动数
sortedObjectives []float64 // 对分位数进行排序,升序,防止用户输入的分位数是乱序的
labelPairs []*dto.LabelPair
sum float64 // 观测到的数据值的总和
cnt uint64 // 观测的次数
hotBuf, coldBuf []float64 // 数据的缓存
streams []*quantile.Stream //原始数据
streamDuration time.Duration
headStream *quantile.Stream
headStreamIdx int
headStreamExpTime, hotBufExpTime time.Time
}
newSummary 初始化summary
设置3个默认值
if opts.MaxAge == 0 {
opts.MaxAge = DefMaxAge
}
if opts.AgeBuckets == 0 {
opts.AgeBuckets = DefAgeBuckets
}
if opts.BufCap == 0 {
opts.BufCap = DefBufCap
}
- hotBuf, coldBuf中的数据缓存长度为 500
- AgeBuckets 默认设置5个stream,代表5个stream缓存
- headStreamExpTime 设置为 10min/5 =2 min,代表2分钟的计算周期
初始化streams
- 底层分位值库 https://github.com/beorn7/perks
for i := uint32(0); i < opts.AgeBuckets; i++ {
s.streams = append(s.streams, s.newStream())
}
s.headStream = s.streams[0]
记录summary的核心方法是Observe()
- 作用是在本地增加一个观测值
func (s *summary) Observe(v float64) {
s.bufMtx.Lock()
defer s.bufMtx.Unlock()
now := time.Now()
if now.After(s.hotBufExpTime) {
s.asyncFlush(now)
}
s.hotBuf = append(s.hotBuf, v)
if len(s.hotBuf) == cap(s.hotBuf) {
s.asyncFlush(now)
}
}
- 将传入的v添加到 hotBuf中
- 两个条件会触发计算操作
- 过了2分钟
if now.After(s.hotBufExpTime)
-
if len(s.hotBuf) == cap(s.hotBuf)
hotBuf中的v数量达到了500
flush操作
func (s *summary) asyncFlush(now time.Time) {
s.mtx.Lock()
s.swapBufs(now)
// Unblock the original goroutine that was responsible for the mutation
// that triggered the compaction. But hold onto the global non-buffer
// state mutex until the operation finishes.
go func() {
s.flushColdBuf()
s.mtx.Unlock()
}()
}
- swapBufs 交换 s.hotBuf, s.coldBuf
// swapBufs needs mtx AND bufMtx locked, coldBuf must be empty.
func (s *summary) swapBufs(now time.Time) {
if len(s.coldBuf) != 0 {
panic("coldBuf is not empty")
}
s.hotBuf, s.coldBuf = s.coldBuf, s.hotBuf
// hotBuf is now empty and gets new expiration set.
for now.After(s.hotBufExpTime) {
s.hotBufExpTime = s.hotBufExpTime.Add(s.streamDuration)
}
}
flushColdBuf 函数
- 遍历s.coldBuf,将v插入所有的streams中
- 然后将 coldBuf清空
// flushColdBuf needs mtx locked.
func (s *summary) flushColdBuf() {
for _, v := range s.coldBuf {
for _, stream := range s.streams {
stream.Insert(v)
}
s.cnt++
s.sum += v
}
s.coldBuf = s.coldBuf[0:0]
s.maybeRotateStreams()
}
将数据插入到 stream中
- D:\go_path\pkg\mod\github.com\beorn7\perks@v1.0.1\quantile\stream.go
// Insert inserts v into the stream.
func (s *Stream) Insert(v float64) {
s.insert(Sample{Value: v, Width: 1})
}
func (s *Stream) insert(sample Sample) {
s.b = append(s.b, sample)
s.sorted = false
if len(s.b) == cap(s.b) {
s.flush()
}
}
获取summary 的时候调用write函数
- 遍历分位值,然后调用headStream.Query方法获取对应rank的分位值
func (s *summary) Write(out *dto.Metric) error {
for _, rank := range s.sortedObjectives {
var q float64
if s.headStream.Count() == 0 {
q = math.NaN()
} else {
q = s.headStream.Query(rank)
}
qs = append(qs, &dto.Quantile{
Quantile: proto.Float64(rank),
Value: proto.Float64(q),
})
}
}
- 底层调用的就是 stream.query方法,位置D:\go_path\pkg\mod\github.com\beorn7\perks@v1.0.1\quantile\stream.go
- 原理就是根据长度和rank求索引,然后根据索引取值即可
func (s *Stream) Query(q float64) float64 {
if !s.flushed() {
// Fast path when there hasn't been enough data for a flush;
// this also yields better accuracy for small sets of data.
l := len(s.b)
if l == 0 {
return 0
}
i := int(math.Ceil(float64(l) * q))
if i > 0 {
i -= 1
}
s.maybeSort()
return s.b[i].Value
}
s.flush()
return s.stream.query(q)
}
本节重点总结 :
- summary数据结构
- coldbuf 做计算的
- hotbuf是用来接收最新数据
- 分位值库 https://github.com/beorn7/perks