一、请给出下面差分约束系统的可行解或证明该系统没有可行解。
文心一言 VS 讯飞星火 VS chatgpt (369)-- 算法导论24.4 1题_差分约束系统
文心一言 VS 讯飞星火 VS chatgpt (369)-- 算法导论24.4 1题_Go_02
文心一言 VS 讯飞星火 VS chatgpt (369)-- 算法导论24.4 1题_文心一言_03
文心一言 VS 讯飞星火 VS chatgpt (369)-- 算法导论24.4 1题_算法_04
文心一言 VS 讯飞星火 VS chatgpt (369)-- 算法导论24.4 1题_文心一言_05
文心一言 VS 讯飞星火 VS chatgpt (369)-- 算法导论24.4 1题_Go_06
文心一言 VS 讯飞星火 VS chatgpt (369)-- 算法导论24.4 1题_文心一言_07
文心一言 VS 讯飞星火 VS chatgpt (369)-- 算法导论24.4 1题_差分约束系统_08
文心一言 VS 讯飞星火 VS chatgpt (369)-- 算法导论24.4 1题_文心一言_09
文心一言 VS 讯飞星火 VS chatgpt (369)-- 算法导论24.4 1题_文心一言_10
如果要写代码,请用go语言。

文心一言:

要判断给定的差分约束系统是否有可行解,我们可以使用Bellman-Ford算法。Bellman-Ford算法可以用来检测是否存在负权回路,如果存在负权回路,则差分约束系统没有可行解。

以下是用Go语言实现的Bellman-Ford算法来检测给定差分约束系统的可行性:

package main

import (
	"fmt"
	"math"
)

const (
	V = 7 // 顶点数量(假设最大为7,实际应根据x的最大编号确定)
	INF = math.MaxInt32
)

// Edge 结构体表示图中的边
type Edge struct {
	src, dest, weight int
}

// BellmanFord 函数检测从源点src是否存在负权回路
func BellmanFord(edges []Edge, src int) bool {
	// dist[] 存储从源点到所有其他顶点的最短距离
	dist := make([]int, V)
	// 初始化所有距离为无穷大
	for i := 0; i < V; i++ {
		dist[i] = INF
	}
	// 源点到自身的距离为0
	dist[src] = 0

	// 松弛所有边 |V| - 1 次
	for i := 1; i < V; i++ {
		for _, edge := range edges {
			u, v, w := edge.src, edge.dest, edge.weight
			if dist[u] != INF && dist[u]+w < dist[v] {
				dist[v] = dist[u] + w
			}
		}
	}

	// 检查负权回路
	for _, edge := range edges {
		u, v, w := edge.src, edge.dest, edge.weight
		if dist[u] != INF && dist[u]+w < dist[v] {
			return false // 存在负权回路
		}
	}

	return true // 不存在负权回路
}

func main() {
	edges := []Edge{
		{1, 2, -1}, // x1 - x2 <= 1 转换为 x2 - x1 <= -1
		{1, 4, 4},  // x1 - x4 <= -4 转换为 x4 - x1 <= 4
		{2, 3, -2}, // x2 - x3 <= 2 转换为 x3 - x2 <= -2
		{2, 5, -7}, // x2 - x5 <= 7 转换为 x5 - x2 <= -7
		{2, 6, -5}, // x2 - x6 <= 5 转换为 x6 - x2 <= -5
		{3, 6, -10},// x3 - x6 <= 10 转换为 x6 - x3 <= -10
		{4, 2, -2}, // x4 - x2 <= 2 转换为 x2 - x4 <= -2
		{5, 1, 1},  // x5 - x1 <= -1 转换为 x1 - x5 <= 1
		{5, 4, -3}, // x5 - x4 <= 3 转换为 x4 - x5 <= -3
		{6, 3, 8},  // x6 - x3 <= -8 转换为 x3 - x6 <= 8
	}

	// 假设从顶点1开始
	if BellmanFord(edges, 1) {
		fmt.Println("存在可行解")
	} else {
		fmt.Println("不存在可行解")
	}
}

在这个程序中,我们首先将所有的不等式转换为边的形式,并反转不等号,因为Bellman-Ford算法默认处理的是最短路径问题,即dist[v] <= dist[u] + weight。然后我们运行Bellman-Ford算法来检测是否存在负权回路。

需要注意的是,顶点数量 V 的值应该根据 x 的最大编号来确定,这里我们假设最大为7。如果 x 的编号更大,则需要调整 V 的值。

运行这个程序会告诉我们是否存在可行解。如果输出“存在可行解”,则表示差分约束系统有可行解;如果输出“不存在可行解”,则表示该系统没有可行解。

文心一言 VS 讯飞星火 VS chatgpt (369)-- 算法导论24.4 1题_数据库_11

文心一言 VS 讯飞星火 VS chatgpt (369)-- 算法导论24.4 1题_Go_12

文心一言 VS 讯飞星火 VS chatgpt (369)-- 算法导论24.4 1题_算法_13


文心一言 VS 讯飞星火 VS chatgpt (369)-- 算法导论24.4 1题_文心一言_14

讯飞星火:

首先,我们需要将差分约束系统转化为线性规划问题。我们可以使用以下方法:

  1. 对于每个不等式约束,将其转化为等式约束:文心一言 VS 讯飞星火 VS chatgpt (369)-- 算法导论24.4 1题_算法_15,其中 文心一言 VS 讯飞星火 VS chatgpt (369)-- 算法导论24.4 1题_差分约束系统_16
  2. 将所有的等式约束和目标函数(如果有的话)放入一个矩阵中。
  3. 使用线性规划求解器(如Go语言中的gonum/optimize库)来求解问题。

下面是用Go语言实现的代码:

package main

import (
	"fmt"
	"math"

	"gonum.org/v1/gonum/mat"
	"gonum.org/v1/gonum/optimize"
)

func main() {
	// 定义约束条件
	constraints := []optimize.Constraint{
		{From: mat.NewDense(5, 6, []float64{-1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}), To: mat.NewVecDense(5, []float64{1, 1, 1, 1, 1})},
		{From: mat.NewDense(5, 6, []float64{-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}), To: mat.NewVecDense(5, []float64{-4, -4, -4, -4, -4})},
		{From: mat.NewDense(5, 6, []float64{0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}), To: mat.NewVecDense(5, []float64{2, 2, 2, 2, 2})},
		{From: mat.NewDense(5, 6, []float64{0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}), To: mat.NewVecDense(5, []float64{7, 7, 7, 7, 7})},
		{From: mat.NewDense(5, 6, []float64{0, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}), To: mat.NewVecDense(5, []float64{5, 5, 5, 5, 5})},
		{From: mat.NewDense(5, 6, []float64{0, 0, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}), To: mat.NewVecDense(5, []float64{10, 10, 10, 10, 10})},
		{From: mat.NewDense(5, 6, []float64{1, 0, 0, 0, 0, 0, -2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}), To: mat.NewVecDense(5, []float64{2, 2, 2, 2, 2})},
		{From: mat.NewDense(5, 6, []float64{-1, -1, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}), To: mat.NewVecDense(5, []float64{-1, -1, -1, -1, -1})},
		{From: mat.NewDense(5, 6, []float64{0, -1, -1, -1, -1, -1, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3}), To: mat.NewVecDense(5, []float64{3, 3, 3, 3, 3})},
		{From: mat.NewDense(5, 6, []float64{-1, -1, -1, -1, -1, -1, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8}), To: mat.NewVecDense(5, []float64{-8, -8, -8, -8, -8})},
	}

	// 定义目标函数(如果有的话)
	objective := optimize.FuncMax{
		F: func(x []float64) float64 {
			return math.Sin(x[0]) + math.Cos(x[1]) + math.Tan(x[2]) + math.Exp(x[3]) + math.Log(x[4])
		},
	}

	// 定义变量范围
	var bounds = make([]optimize.Bounds, len(constraints))
	for i := range bounds {
		bounds[i] = optimize.Bounds{Min: -math.Inf(), Max: math.Inf()}
	}

	// 创建优化问题
	problem := optimize.Problem{
		Objective: objective,
		Constraints: constraints[:],
		Variables: bounds[:],
	}

	// 求解优化问题
	solution := optimize.Solve(problem)

	// 输出结果
	if solution.Status == optimize.Optimal {
		fmt.Println("最优解:", solution.X)
	} else {
		fmt.Println("无可行解")
	}
}

运行上述代码,可以得到差分约束系统的可行解或证明没有可行解。

360智脑:

为了解决这个问题,我们可以使用Bellman-Ford算法来检查这个差分约束系统是否存在可行解。如果存在负权环,那么系统就没有可行解。如果没有负权环,我们可以得到一个可行解。

以下是一个使用Go语言实现的Bellman-Ford算法的示例代码:

package main

import (
	"fmt"
)

type Edge struct {
	from, to int
	weight   int
}

func BellmanFord(edges []Edge, n int, source int) ([]int, bool) {
	dist := make([]int, n)
	for i := range dist {
		dist[i] = 1<<31 - 1 // 初始化为无穷大
	}
	dist[source] = 0

	for i := 0; i < n-1; i++ {
		for _, edge := range edges {
			if dist[edge.from]+edge.weight < dist[edge.to] {
				dist[edge.to] = dist[edge.from] + edge.weight
			}
		}
	}

	// 检查是否存在负权环
	for _, edge := range edges {
		if dist[edge.from]+edge.weight < dist[edge.to] {
			return nil, false // 存在负权环
		}
	}

	return dist, true
}

func main() {
	edges := []Edge{
		{0, 1, 1},
		{0, 3, -4},
		{1, 2, 2},
		{1, 4, 7},
		{1, 5, 5},
		{2, 5, 10},
		{3, 1, 2},
		{4, 0, -1},
		{4, 3, 3},
		{5, 2, -8},
	}
	n := 6
	source := 0

	dist, feasible := BellmanFord(edges, n, source)
	if !feasible {
		fmt.Println("The system has no feasible solution.")
	} else {
		fmt.Println("A feasible solution is:", dist)
	}
}

在这个代码中,我们首先定义了一个Edge结构体来表示图中的边,然后实现了Bellman-Ford算法。在main函数中,我们创建了边的列表,并调用了BellmanFord函数来检查系统是否有可行解。

请注意,这个代码假设变量x_i对应于索引i,并且我们从节点0开始。如果需要从不同的节点开始或者有不同的索引方案,请相应地调整代码。

运行这段代码,我们将得到一个可行解的数组dist,或者被告知系统没有可行解。

智谱清言:

差分约束系统是一组带有不等式的变量约束,它们可以转化为图论中的最短路径问题。对于每个不等式 文心一言 VS 讯飞星火 VS chatgpt (369)-- 算法导论24.4 1题_文心一言_17,我们可以构造一条从节点 文心一言 VS 讯飞星火 VS chatgpt (369)-- 算法导论24.4 1题_数据库_18 到节点 文心一言 VS 讯飞星火 VS chatgpt (369)-- 算法导论24.4 1题_数据库_19 的边,权重为 文心一言 VS 讯飞星火 VS chatgpt (369)-- 算法导论24.4 1题_文心一言_20。然后,我们可以使用图的最短路径算法来检测这个图是否包含负权重环。如果不存在负权重环,那么这个差分约束系统就有可行解;否则,没有可行解。
以下是使用Go语言实现的差分约束系统的求解代码。这段代码使用了贝尔曼-福特算法来检测负权重环,并寻找每个变量的可能值。

package main
import (
	"fmt"
)
func bellmanFord(edges [][]int, n int) ([]int, bool) {
	// 初始化距离数组,所有的距离都是无穷大
	dist := make([]int, n+1)
	for i := range dist {
		dist[i] = int(1e9)
	}
	dist[1] = 0 // 选择一个节点作为源点,这里选择节点1
	// 重复n-1次,每次尝试放松所有的边
	for i := 0; i < n-1; i++ {
		for _, edge := range edges {
			u, v, weight := edge[0], edge[1], edge[2]
			if dist[u] != int(1e9) && dist[u]+weight < dist[v] {
				dist[v] = dist[u] + weight
			}
		}
	}
	// 检测负权重环
	for _, edge := range edges {
		u, v, weight := edge[0], edge[1], edge[2]
		if dist[u] != int(1e9) && dist[u]+weight < dist[v] {
			// 发现负权重环
			return nil, false
		}
	}
	return dist, true
}
func main() {
	// 定义边
	edges := [][]int{
		{1, 2, 1},
		{1, 4, -4},
		{2, 3, 2},
		{2, 5, 7},
		{2, 6, 5},
		{3, 6, 10},
		{4, 2, 2},
		{5, 1, -1},
		{5, 4, 3},
		{6, 3, -8},
	}
	// 节点数量
	n := 6
	// 使用贝尔曼-福特算法
	dist, noNegativeCycle := bellmanFord(edges, n)
	if noNegativeCycle {
		fmt.Println("可行解为:")
		for i := 1; i <= n; i++ {
			fmt.Printf("x%d = %d\n", i, dist[i])
		}
	} else {
		fmt.Println("该系统没有可行解,因为存在负权重环。")
	}
}

在这个代码中,我们首先定义了边,然后使用贝尔曼-福特算法来寻找最短路径。如果算法检测到负权重环,则返回false,表示差分约束系统没有可行解。如果没有检测到负权重环,则返回每个变量的可能值。注意,由于差分约束系统可能有多个解,这里的解是相对于选择源点为1的情况。如果需要相对于不同的源点,初始化dist数组的方式可能需要调整。

天工:

为了解决差分约束系统问题,我们可以使用Floyd-Warshall算法来检测是否存在负环,进而判断系统是否存在可行解。若不存在负环,则系统有解。下面是使用Go语言实现的代码示例:

package main

import (
	"fmt"
)

func main() {
	// 初始化无穷大
	const inf = 1000000000

	// 初始化距离矩阵
	dist := [][]int{
		{0, 1, inf, inf, inf, inf},
		{inf, 0, 2, inf, -1, -3},
		{inf, inf, 0, inf, inf, 2},
		{-4, 2, inf, 0, inf, inf},
		{inf, inf, inf, 3, 0, inf},
		{inf, 5, 10, inf, inf, 0},
	}

	// Floyd-Warshall算法
	n := len(dist)
	for k := 0; k < n; k++ {
		for i := 0; i < n; i++ {
			for j := 0; j < n; j++ {
				if dist[i][k] != inf && dist[k][j] != inf {
					if dist[i][j] > dist[i][k]+dist[k][j] {
						dist[i][j] = dist[i][k] + dist[k][j]
					}
				}
			}
		}
	}

	// 检测负环
	hasNegativeCycle := false
	for i := 0; i < n; i++ {
		if dist[i][i] < 0 {
			hasNegativeCycle = true
			break
		}
	}

	// 输出结果
	if hasNegativeCycle {
		fmt.Println("该差分约束系统没有可行解,存在负环")
	} else {
		fmt.Println("该差分约束系统有可行解")
	}
}

上述代码中,我们首先初始化了距离矩阵,然后使用Floyd-Warshall算法来更新距离矩阵,最后检查是否存在负环。如果存在负环,说明该差分约束系统没有可行解;否则,说明存在可行解。

注意:上述代码中,我们使用了inf来表示无穷大,这里我们将其初始化为1000000000。在实际应用中,你可以根据具体情况进行调整。

在实际应用中,上述代码可以作为解决差分约束系统问题的基础框架。如果需要更详细的解决方案,可以在此基础上进行优化和扩展。

chatgpt:

根据差分约束系统的定义,我们可以通过Bellman-Ford算法来解决这个问题。Bellman-Ford算法是一种用于求解带有负权边的单源最短路径问题的算法,其本质可以用来解决差分约束系统问题。

下面是使用Go语言实现的代码:

package main

import (
	"fmt"
)

type Edge struct {
	start, end, weight int
}

func main() {
	// 定义差分约束系统
	edges := []Edge{
		{0, 1, 1},
		{0, 3, -4},
		{1, 2, 2},
		{1, 4, 7},
		{1, 5, 5},
		{2, 5, 10},
		{3, 1, 2},
		{4, 0, -1},
		{4, 3, 3},
		{5, 2, -8},
	}

	n := 6           // 节点数量
	dist := make([]int, n)

	// 初始化距离数组
	for i := range dist {
		dist[i] = 1e9
	}
	dist[0] = 0

	// Bellman-Ford算法
	for i := 0; i < n-1; i++ {
		for _, edge := range edges {
			if dist[edge.start]+edge.weight < dist[edge.end] {
				dist[edge.end] = dist[edge.start] + edge.weight
			}
		}
	}

	// 检查是否存在负权回路
	negativeCycle := false
	for _, edge := range edges {
		if dist[edge.start]+edge.weight < dist[edge.end] {
			negativeCycle = true
			break
		}
	}

	// 输出结果
	if negativeCycle {
		fmt.Println("该差分约束系统没有可行解")
	} else {
		fmt.Println("可行解为:")
		for i, d := range dist {
			fmt.Printf("x%d = %d\n", i+1, d)
		}
	}
}

运行此代码将输出可行解或证明差分约束系统没有可行解。

kimi:

要解决这个差分约束系统,我们可以将每个不等式重写为更易于处理的形式。让我们首先重写每个不等式:

  1. ( x_1 - x_2 \leq 1 )
  2. ( x_1 - x_4 \leq -4 )
  3. ( x_2 - x_3 \leq 2 )
  4. ( x_2 - x_5 \leq 7 )
  5. ( x_2 - x_6 \leq 5 )
  6. ( x_3 - x_6 \leq 10 )
  7. ( x_4 - x_2 \leq 2 )
  8. ( x_5 - x_1 \leq -1 )
  9. ( x_5 - x_4 \leq 3 )
  10. ( x_6 - x_3 \leq -8 )

我们可以将这些不等式重写为:

  1. ( x_1 \leq x_2 + 1 )
  2. ( x_1 \leq x_4 - 4 )
  3. ( x_2 \leq x_3 + 2 )
  4. ( x_2 \leq x_5 + 7 )
  5. ( x_2 \leq x_6 + 5 )
  6. ( x_3 \leq x_6 + 10 )
  7. ( x_4 \leq x_2 + 2 )
  8. ( x_5 \leq x_1 - 1 )
  9. ( x_5 \leq x_4 + 3 )
  10. ( x_6 \leq x_3 - 8 )

现在,让我们尝试找到一个满足所有这些不等式的解。我们可以通过从一些变量开始,然后使用不等式来确定其他变量的值。

让我们从 ( x_3 ) 开始。我们可以选择 ( x_3 = 0 ) 作为一个起点。然后,使用不等式 ( x_6 \leq x_3 - 8 ),我们得到 ( x_6 \leq -8 )。让我们选择 ( x_6 = -8 )。

接下来,使用不等式 ( x_3 \leq x_6 + 10 ),我们得到 ( 0 \leq -8 + 10 ),这是真的。现在,使用 ( x_2 \leq x_6 + 5 ),我们得到 ( x_2 \leq -8 + 5 ),所以 ( x_2 \leq -3 )。让我们选择 ( x_2 = -3 )。

使用不等式 ( x_4 \leq x_2 + 2 ),我们得到 ( x_4 \leq -3 + 2 ),所以 ( x_4 \leq -1 )。让我们选择 ( x_4 = -1 )。

使用不等式 ( x_1 \leq x_4 - 4 ),我们得到 ( x_1 \leq -1 - 4 ),所以 ( x_1 \leq -5 )。让我们选择 ( x_1 = -5 )。

使用不等式 ( x_5 \leq x_1 - 1 ),我们得到 ( x_5 \leq -5 - 1 ),所以 ( x_5 \leq -6 )。让我们选择 ( x_5 = -6 )。

现在,让我们检查我们的解是否满足所有不等式:

  1. ( x_1 - x_2 = -5 - (-3) = -2 \leq 1 )(真)
  2. ( x_1 - x_4 = -5 - (-1) = -4 \leq -4 )(真)
  3. ( x_2 - x_3 = -3 - 0 = -3 \leq 2 )(真)
  4. ( x_2 - x_5 = -3 - (-6) = 3 \leq 7 )(真)
  5. ( x_2 - x_6 = -3 - (-8) = 5 \leq 5 )(真)
  6. ( x_3 - x_6 = 0 - (-8) = 8 \leq 10 )(真)
  7. ( x_4 - x_2 = -1 - (-3) = 2 \leq 2 )(真)
  8. ( x_5 - x_1 = -6 - (-5) = -1 \leq -1 )(真)
  9. ( x_5 - x_4 = -6 - (-1) = -5 \leq 3 )(真)
  10. ( x_6 - x_3 = -8 - 0 = -8 \leq -8 )(真)

所有不等式都满足,所以可行解是 ( x_1 = -5, x_2 = -3, x_3 = 0, x_4 = -1, x_5 = -6, x_6 = -8 )。

由于问题要求用Go语言编写代码,我们可以编写一个简单的程序来验证这个解:

package main

import "fmt"

func main() {
    var x1, x2, x3, x4, x5, x6 int
    x1, x2, x3, x4, x5, x6 = -5, -3, 0, -1, -6, -8

    fmt.Println("Checking the solution:")
    fmt.Println("1. x1 - x2 <= 1:", x1-x2 <= 1)
    fmt.Println("2. x1 - x4 <= -4:", x1-x4 <= -4)
    fmt.Println("3. x2 - x3 <= 2:", x2-x3 <= 2)
    fmt.Println("4. x2 - x5 <= 7:", x2-x5 <= 7)
    fmt.Println("5. x2 - x6 <= 5:", x2-x6 <= 5)
    fmt.Println("6. x3 - x6 <= 10:", x3-x6 <= 10)
    fmt.Println("7. x4 - x2 <= 2:", x4-x2 <= 2)
    fmt.Println("8. x5 - x1 <= -1:", x5-x1 <= -1)
    fmt.Println("9. x5 - x4 <= 3:", x5-x4 <= 3)
    fmt.Println("10. x6 - x3 <= -8:", x6-x3 <= -8)
}

当你运行这个程序时,它将验证我们找到的解是否满足所有不等式。

混元:

要解决差分约束系统是否有可行解的问题,可以使用Bellman-Ford算法或SPFA(Shortest Path Faster Algorithm)来检测负环。如果存在负环,则系统没有可行解;否则,系统有可行解。

下面是用Go语言实现的SPFA算法来检测差分约束系统是否有可行解:

package main

import (
	"fmt"
	"math"
)

type Edge struct {
	to     int
	weight int
}

func SPFA(edges [][]Edge, start int, n int) bool {
	dist := make([]int, n)
	inQueue := make([]bool, n)
	queue := []int{start}

	for i := range dist {
		dist[i] = math.MaxInt32
	}
	dist[start] = 0

	for len(queue) > 0 {
		u := queue[0]
		queue = queue[1:]
		inQueue[u] = false

		for _, edge := range edges[u] {
			v := edge.to
			if dist[u]+edge.weight < dist[v] {
				dist[v] = dist[u] + edge.weight
				if !inQueue[v] {
					queue = append(queue, v)
					inQueue[v] = true
				}
			}
		}
	}

	// Check for negative cycles
	for u := 0; u < n; u++ {
		for _, edge := range edges[u] {
			v := edge.to
			if dist[u]+edge.weight < dist[v] {
				return false // Negative cycle detected
			}
		}
	}

	return true
}

func main() {
	n := 6 // Number of variables
	edges := make([][]Edge, n)

	// Add edges based on the constraints
	edges[0] = append(edges[0], Edge{1, -1})
	edges[0] = append(edges[0], Edge{3, 4})
	edges[1] = append(edges[1], Edge{2, -2})
	edges[1] = append(edges[1], Edge{4, -7})
	edges[1] = append(edges[1], Edge{5, -5})
	edges[2] = append(edges[2], Edge{5, -10})
	edges[3] = append(edges[3], Edge{1, -2})
	edges[4] = append(edges[4], Edge{0, 1})
	edges[4] = append(edges[4], Edge{3, -3})
	edges[5] = append(edges[5], Edge{2, 8})

	start := n // Start from a dummy node connected to all variables with weight 0
	for i := 0; i < n; i++ {
		edges[start] = append(edges[start], Edge{i, 0})
	}

	if SPFA(edges, start, n+1) {
		fmt.Println("The system has a feasible solution.")
	} else {
		fmt.Println("The system does not have a feasible solution.")
	}
}

解释

  1. 数据结构
  • Edge结构体表示一条边,包含目标节点to和权重weight
  • edges是一个二维切片,表示图的邻接表。
  1. SPFA算法
  • 初始化距离数组dist,将起始节点的距离设为0,其他节点的距离设为无穷大。
  • 使用队列进行广度优先搜索,更新每个节点的最短距离。
  • 如果在更新过程中发现负环,则返回false
  1. 主函数
  • 根据给定的差分约束系统构建图。
  • 添加一个虚拟起始节点,连接到所有变量节点,权重为0。
  • 调用SPFA算法检测是否有负环。

运行上述代码,如果输出“The system has a feasible solution.”,则表示系统有可行解;如果输出“The system does not have a feasible solution.”,则表示系统没有可行解。