今天下午去了锐捷网络的售后技术支持的笔试,卷子两张,一张主卷,一张附加分。主卷50题不定项选择题,内容均为网络基础知识,难度大概就NA吧,但是由于是不定项的,所以还是挺纠结的。附加分10道单选,初中数学几题,逻辑推理几题,稍微有逻辑推理能力的都可以推出来。时间共90分钟,是绝对够的。

我和几个同学一起去的,去的很早,提前将近一个小时。毕竟这还是第一次,宁早勿迟了。不知道是不是紧张了还是喝了杯阿里山清茶,我在考前考后都去了趟厕所,中间还因为没找着厕所多跑了一趟。。不过做题的感觉到还行,附加题是自我感觉良好,前面大体过得去,当然也有些纠结之处。现在只希望能有机会去面试了。。

 

老婆看得紧,要早点睡觉。废话不多说,进入今天的重点。今天上了彬哥的课,内容为组播,就弄些组播的基础知识吧。由于时间不早了,就去拷了份不错的文档了。文档出自H3C,只包含部分内容,请到http://www.h3c.com.cn访问原文。

2  组播技术实现

组播技术的实现需要解决以下几方面问题:

l              组播源向一组确定的接收者发送信息,而如何来标识这组确定的接收者?——这需要用到组播地址机制

l              接收者通过加入组播组来实现对组播信息的接收,而接收者是如何动态地加入或离开组播组的?——即如何进行组成员关系管理

l              组播报文在网络中是如何被转发并最终到达接收者的?——即组播报文转发的过程;

l              组播报文的转发路径(即组播转发树)是如何构建的?——这是由各组播路由协议来完成的。

2.1  组播地址机制

2.1.1  IP组播地址

IP组播地址用于标识一个IP组播组。IANAD类地址空间分配给组播使用,范围从224.0.0.0239.255.255.255

组播基础知识_组播

图1 IP组播地址格式

1所示,IP组播地址前四位均为“1110”,而整个IP组播地址空间的划分则如2所示。

组播基础知识_组播_02

图2 IP组播地址划分

l              224.0.0.0224.0.0.255IANA预留,地址224.0.0.0保留不做分配,其它地址供路由协议及拓扑查找和维护协议使用。该范围内的地址属于局部范畴,不论TTL为多少,都不会被路由器转发;

l              224.0.1.0238.255.255.255为用户可用的组播地址,在全网范围内有效。其中232.0.0.0/8SSM组地址,而其余则属于ASM组地址。有关ASMSSM的详细介绍,请参见“2.5  组播模型分类”一节;

l              239.0.0.0239.255.255.255为本地管理组播地址,仅在特定的本地范围内有效,也属于ASM组地址。使用本地管理组地址可以灵活定义组播域的范围,以实现不同组播域之间的地址隔离,从而有助于在不同组播域内重复使用相同组播地址而不会引起冲突。

&  说明:

224.0.1.0/24网段内的一些组播地址也被IANA预留给了某些组播应用。譬如,224.0.1.1被预留给NTPNetwork Time Protocol,网络时间协议)所使用。

 

2.1.2  IP组播地址到链路层的映射

&  说明:

本文只讨论以太网链路层协议的组播实现,其它链路层协议的组播实现并不作为本文讨论的重点。

 

IANAMAC地址范围01:00:5E:00:00:0001:00:5E:7F:FF:FF分配给组播使用,这就要求将28位的IP组播地址空间映射到23位的组播MAC地址空间中,具体的映射方法是将组播地址中的低23位放入MAC地址的低23位,如3所示。

组播基础知识_组播_03

图3 IP组播地址到组播MAC地址的映射

由于IP组播地址的后28位中只有23位被映射到组播MAC地址,这样会有32IP组播地址映射到同一组播MAC地址上。

2.2  组成员关系管理

组成员关系管理是指在路由器/交换机上建立直联网段内的组成员关系信息,具体说,就是各接口/端口下有哪些组播组的成员。

2.2.1  IGMP

IGMP运行于主机和与主机直连的路由器之间,其实现的功能是双向的:一方面,主机通过IGMP通知路由器希望接收某个特定组播组的信息;另一方面,路由器通过IGMP周期性地查询局域网内的组播组成员是否处于活动状态,实现所连网段组成员关系的收集与维护。通过IGMP,在路由器中记录的信息是某个组播组是否在本地有组成员,而不是组播组与主机之间的对应关系。

目前IGMP有以下三个版本:

l              IGMPv1RFC 1112)中定义了基本的组成员查询和报告过程;

l              IGMPv2RFC 2236)在IGMPv1的基础上添加了组成员快速离开的机制等;

l              IGMPv3RFC 3376)中增加的主要功能是成员可以指定接收或拒绝来自某些组播源的报文,以实现对SSM模型的支持。

以下着重介绍IGMPv2的原理。

组播基础知识_组播_04

图4 IGMPv2的工作原理

4所示,当同一个网段内有多个IGMP路由器时,IGMPv2通过查询器选举机制从中选举出唯一的查询器。查询器周期性地发送普遍组查询消息进行成员关系查询,主机通过发送报告消息来响应查询。而作为组成员的路由器,其行为也与普通主机一样,响应其它路由器的查询。

当主机要加入组播组时,不必等待查询消息,而是主动发送报告消息;当主机要离开组播组时,也会主动发送离开组消息,查询器收到离开组消息后,会发送特定组查询消息来确定该组的所有组成员是否都已离开。

通过上述机制,在路由器里建立起一张表,其中记录了路由器各接口所对应子网上都有哪些组的成员。当路由器收到发往组G的组播数据后,只向那些有G的成员的接口转发该数据。至于组播数据在路由器之间如何转发则由组播路由协议决定,而不是IGMP的功能。

2.2.2  IGMP Snooping

IGMP是针对IP层设计的,只能记录路由器上的三层接口与IP组播地址的对应关系。但在很多情况下,组播报文不可避免地要经过一些交换机,如果没有一种机制将二层端口与组播MAC地址对应起来,组播报文就会转发给交换机的所有端口,这显然会浪费大量的系统资源。

IGMP Snooping的出现就可以解决这个问题,其工作原理为:主机发往IGMP查询器的报告消息经过交换机时,交换机对这个消息进行监听并记录下来,为端口和组播MAC地址建立起映射关系;当交换机收到组播数据时,根据这样的映射关系,只向连有组成员的端口转发组播数据。

2.3  组播报文转发

2.3.1  组播转发树

组播报文在网络中沿着树型转发路径进行转发,该路径称为组播转发树。它可分为源树(Source Tree)和共享树(RPT)两大类:

1. 源树

源树是指以组播源作为树根,将组播源到每一个接收者的最短路径结合起来构成的转发树。由于源树使用的是从组播源到接收者的最短路径,因此也称为最短路径树(SPT)。对于某个组,网络要为任何一个向该组发送报文的组播源建立一棵树。

源树的优点是能构造组播源和接收者之间的最短路径,使端到端的延迟达到最小。但付出的代价是,在路由器中必须为每个组播源保存路由信息,这样会占用大量的系统资源,路由表的规模也比较大。

2. 共享树

以某个路由器作为路由树的树根,该路由器称为汇集点(RP),共享树就是由RP到所有接收者的最短路路径所共同构成的转发树。使用共享树时,对应某个组网络中只有一棵树。所有的组播源和接收者都使用这棵树来收发报文,组播源先向树根发送数据报文,之后报文又向下转发到达所有的接收者。

共享树的最大优点是路由器中保留的路由信息可以很少,缺点是组播源发出的报文要先经过RP,再到达接收者,经由的路径通常并非最短,而且对RP的可靠性和处理能力要求很高。

2.3.2  组播报文转发机制

当路由器收到组播数据报文时,根据组播目的地址查找组播转发表,对报文进行转发。与单播报文的转发相比,组播报文的转发相对复杂:在单播报文的转发过程中,路由器并不关心报文的源地址,只关心报文的目的地址,通过其目的地址决定向哪个接口转发;而组播报文是发送给一组接收者的,这些接收者用一个逻辑地址(即组播地址)标识,路由器在收到组播报文后,必须根据报文的源地址确定其正确的入接口(指向组播源方向)和下游方向,然后将其沿着远离组播源的下游方向转发——这个过程称为逆向路径转发(RPF)。

RPF执行过程中会利用原有的单播路由表确定上、下游的邻接节点,只有报文从上游节点所对应的接口(称为RPF接口,即路由器上通过单播方式向该地址发送报文的出接口)到达时,才向下游转发。RPF的主体是RPF检查,通过RPF检查除了可以正确地按照组播路由的配置转发报文外,还可以避免可能出现的环路。路由器收到组播报文后先对其进行RPF检查,只有检查通过才执行转发。

RPF检查的过程为:路由器在单播路由表中查找组播源或RP对应的RPF接口(使用SPT时查找组播源对应的RPF接口,使用RPT时查找RP对应的RPF接口),如果组播报文是从RPF接口接收下来的,则RPF检查通过,报文向下游接口转发;否则,丢弃该报文。