SparkSQL访问Hive源,MySQL源
一、SparkSQL访问Hive源
软件环境
hadoop2.7.6
spark-2.3.0
scala-2.11.12
hive-2.1.1
SparkSQL命令行模式可以直接连接Hive的
将hive目录中的 D:\Soft\apache-hive-2.1.1-bin\conf\hive-site.xml 文件拷贝贝到 D:\Soft\spark\conf spark目录中
D:\soft\spark\jars 目录中放 mysql-connector-java-5.1.30.jar 包
Java程序SparkSQL连接Hive
1)将hive目录中的 D:\Soft\apache-hive-2.1.1-bin\conf\hive-site.xml 文件拷贝到 \src\main\resources 资源目录中
2)添加依赖
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_2.11</artifactId>
<version>2.3.1</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.30</version>
</dependency>
3) 创建SparkSession
/**
* SparkSession
* 支持数据源:hive
* @return
*/
public static SparkSession getSparkSessionForHive() {
return SparkSession
.builder()
.appName("SparkSQLForHive")
.master("local[*]")
.enableHiveSupport()
.getOrCreate();
}
- 测试代码
public static void main(String[] args) {
SparkSession spark = SparkUtil.getSparkSessionForHive();
spark.sql("show tables").show();
spark.sql("select * from test1").show();
}
- 运行结果
18/11/18 22:36:44 INFO CodeGenerator: Code generated in 234.231366 ms
18/11/18 22:36:44 INFO CodeGenerator: Code generated in 11.285122 ms
+--------+--------------+-----------+
|database| tableName|isTemporary|
+--------+--------------+-----------+
| default|bucket_persion| false|
| default| bucket_temp| false|
| default| hdfs1| false|
| default| hdfs2| false|
| default| pt1| false|
| default| tbcsv1| false|
| default| tbcsv2| false|
| default| test1| false|
| default| test_table_2| false|
+--------+--------------+-----------+
.........
18/11/18 22:36:46 INFO Executor: Finished task 0.0 in stage 0.0 (TID 0). 1346 bytes result sent to driver
18/11/18 22:36:46 INFO TaskSetManager: Finished task 0.0 in stage 0.0 (TID 0) in 237 ms on localhost (executor driver) (1/1)
18/11/18 22:36:46 INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool
18/11/18 22:36:46 INFO DAGScheduler: ResultStage 0 (show at redHive.java:14) finished in 0.313 s
18/11/18 22:36:46 INFO DAGScheduler: Job 0 finished: show at redHive.java:14, took 0.352593 s
+-------+---+-------+------+
| name|age|address|school|
+-------+---+-------+------+
| chy| 1| 芜湖| 示范|
| zjj| 2| 南京| 南开|
|gaoxing| 3| 马鞍山| 安工大|
+-------+---+-------+------+
18/11/18 22:36:46 INFO SparkContext: Invoking stop() from shutdown hook
二、SparkSQL访问MySql源
Spark环境
spark-2.3.0
添加依赖
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>2.3.0</version>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.22</version>
</dependency>
创建SparkSession
/**
* SparkSession
* 支持数据源:textFile,load,csv,json,text,format,jdbc
* @return
*/
public static SparkSession getSparkSession() {
return SparkSession
.builder()
.appName("SparkSQL")
.master("local[*]")
.getOrCreate();
}
访问Mysql方式1:
public static void test(){
String url="jdbc:mysql://localhost:3306/sparksql?user=root&password=123456";
String tableName="users";
SparkSession spark= SparkUtil.getSparkSession();
Map<String,String> map=new HashMap<>();
map.put("driver","com.mysql.jdbc.Driver");
map.put("url",url);
map.put("dbtable",tableName);
map.put("fetchSize","100");
//读取users信息
Dataset<Row> jdbcDF = spark.read()
.format("jdbc")
.options(map)
.load();
//读取users信息,保存到users_copy表
jdbcDF.write()
.format("jdbc")
.option("url", url)
.option("dbtable", "users_copy")
.save();
}
访问Mysql方式2:
public static void test2(){
String url="jdbc:mysql://localhost:3306/sparksql";
String tempTableName=" (select id,name from users) as u";
SparkSession spark= SparkUtil.getSparkSession();
Properties connectionProperties = new Properties();
connectionProperties.put("user", "root");
connectionProperties.put("password", "123456");
connectionProperties.put("isolationLevel","REPEATABLE_READ");
//读取users信息
Dataset<Row> jdbcDF2 = spark.read()
.jdbc(url, tempTableName, connectionProperties);
//读取users信息,保存到users1表
jdbcDF2.write()
.jdbc(url, "users1", connectionProperties);
}