这部分内容教你写一个基于内存的、只能添加的、只有一个表的数据库,原文章地址:https://cstack.github.io/db_tutorial/parts/part3.html

我们将从小的地方着手,对数据库添加一些限制,目前它会:

  • 支持两种操作:插入一行和打印所有行
  • 仅驻留在内存中(无磁盘持久性)
  • 支持单个硬编码表

我们的硬编码表将用于像这样存储用户

column

type

id

integer

username

varchar(32)

email

varchar(255)

这是一个简单的架构,但它能支持多种数据类型和多种大小的文本数据类型。

insert 语句现在将看起来如下:

insert 1 cstack foo@bar.com

这意味着我们需要更新 prepare_statement 函数来解析参数

if (strncmp(input_buffer->buffer, "insert", 6) == 0) {
     statement->type = STATEMENT_INSERT;
+    int args_assigned = sscanf(
+        input_buffer->buffer, "insert %d %s %s", &(statement->row_to_insert.id),
+        statement->row_to_insert.username, statement->row_to_insert.email);
+    if (args_assigned < 3) {
+      return PREPARE_SYNTAX_ERROR;
+    }
     return PREPARE_SUCCESS;
   }
   if (strcmp(input_buffer->buffer, "select") == 0) {

我们将使用一个新的数据结构 Row 来存储语句中的参数:

+#define COLUMN_USERNAME_SIZE 32
+#define COLUMN_EMAIL_SIZE 255
+typedef struct {
+  uint32_t id;
+  char username[COLUMN_USERNAME_SIZE];
+  char email[COLUMN_EMAIL_SIZE];
+} Row;
+
 typedef struct {
   StatementType type;
+  Row row_to_insert;  // only used by insert statement
 } Statement;

现在我们需要把数据复制到某些表示表的数据结构中。SQLite使用了B树进行快速查找,插入和删除。我们将从一些更简单的东西开始。像B树一样,它会把行组合为页,但不把这些页排列为树,而是把它们排列为数组。

这是我接下来的计划:

  • 将行存储在称为页的内存块中
  • 每一页尽可能多地存储行
  • 行被序列化为每页的紧凑表示形式
  • 页只在有需求的时候被分配
  • 维护一组固定长度的指向页的指针

首先,我们来定义一行的紧凑表示:

+#define size_of_attribute(Struct, Attribute) sizeof(((Struct*)0)->Attribute)
+
+const uint32_t ID_SIZE = size_of_attribute(Row, id);
+const uint32_t USERNAME_SIZE = size_of_attribute(Row, username);
+const uint32_t EMAIL_SIZE = size_of_attribute(Row, email);
+const uint32_t ID_OFFSET = 0;
+const uint32_t USERNAME_OFFSET = ID_OFFSET + ID_SIZE;
+const uint32_t EMAIL_OFFSET = USERNAME_OFFSET + USERNAME_SIZE;
+const uint32_t ROW_SIZE = ID_SIZE + USERNAME_SIZE + EMAIL_SIZE;

这意味着每行序列化后的布局会像这样:

column

size (bytes)

offset

id

4

0

username

32

4

email

255

36

total

291

同时,我们还需要代码来转化两种表示:

+void serialize_row(Row* source, void* destination) {
+  memcpy(destination + ID_OFFSET, &(source->id), ID_SIZE);
+  memcpy(destination + USERNAME_OFFSET, &(source->username), USERNAME_SIZE);
+  memcpy(destination + EMAIL_OFFSET, &(source->email), EMAIL_SIZE);
+}
+
+void deserialize_row(void* source, Row* destination) {
+  memcpy(&(destination->id), source + ID_OFFSET, ID_SIZE);
+  memcpy(&(destination->username), source + USERNAME_OFFSET, USERNAME_SIZE);
+  memcpy(&(destination->email), source + EMAIL_OFFSET, EMAIL_SIZE);
+}

接下来,创建一个 Table 结构指向行页并跟踪行数:

+const uint32_t PAGE_SIZE = 4096;
+#define TABLE_MAX_PAGES 100
+const uint32_t ROWS_PER_PAGE = PAGE_SIZE / ROW_SIZE;
+const uint32_t TABLE_MAX_ROWS = ROWS_PER_PAGE * TABLE_MAX_PAGES;
+
+typedef struct {
+  uint32_t num_rows;
+  void* pages[TABLE_MAX_PAGES];
+} Table;

我将页面大小设为4kb,因为大多数计算机体系结构的虚拟内存系统使用的页面大小也是4kb.这意味着我们数据库的一页刚好对应操作系统使用的一页。这样,操作系统将会把整页作为一个单元,整体移入或移出内存,而不把页拆解开来。

我还强制设置了一个在内存中最大分配100页的限制。当我们选择树结构时,数据库的最大大小只受到文件最大大小的限制(尽管我们仍然会限制同时在内存保留的页数)

行不应该跨越页的界限。由于页很可能不知道彼此相邻存在,在这个假设下我们的行读写更简便了。

说到这里,以下是我们如何确定特定行在内存中读写位置的代码:

+void* row_slot(Table* table, uint32_t row_num) {
+  uint32_t page_num = row_num / ROWS_PER_PAGE;
+  void* page = table->pages[page_num];
+  if (page == NULL) {
+    // Allocate memory only when we try to access page
+    page = table->pages[page_num] = malloc(PAGE_SIZE);
+  }
+  uint32_t row_offset = row_num % ROWS_PER_PAGE;
+  uint32_t byte_offset = row_offset * ROW_SIZE;
+  return page + byte_offset;
+}

现在我们可以使用 execute_statement 从表结构中进行读写

-void execute_statement(Statement* statement) {
+ExecuteResult execute_insert(Statement* statement, Table* table) {
+  if (table->num_rows >= TABLE_MAX_ROWS) {
+    return EXECUTE_TABLE_FULL;
+  }
+
+  Row* row_to_insert = &(statement->row_to_insert);
+
+  serialize_row(row_to_insert, row_slot(table, table->num_rows));
+  table->num_rows += 1;
+
+  return EXECUTE_SUCCESS;
+}
+
+ExecuteResult execute_select(Statement* statement, Table* table) {
+  Row row;
+  for (uint32_t i = 0; i < table->num_rows; i++) {
+    deserialize_row(row_slot(table, i), &row);
+    print_row(&row);
+  }
+  return EXECUTE_SUCCESS;
+}
+
+ExecuteResult execute_statement(Statement* statement, Table* table) {
   switch (statement->type) {
     case (STATEMENT_INSERT):
-      printf("This is where we would do an insert.\n");
-      break;
+      return execute_insert(statement, table);
     case (STATEMENT_SELECT):
-      printf("This is where we would do a select.\n");
-      break;
+      return execute_select(statement, table);
   }
 }

最后,我们需要初始化表,创建相应的内存表示方法,并能处理更多错误情况

+ Table* new_table() {
+  Table* table = (Table*)malloc(sizeof(Table));
+  table->num_rows = 0;
+  for (uint32_t i = 0; i < TABLE_MAX_PAGES; i++) {
+     table->pages[i] = NULL;
+  }
+  return table;
+}
+
+void free_table(Table* table) {
+    for (int i = 0; table->pages[i]; i++) {
+	free(table->pages[i]);
+    }
+    free(table);
+}
int main(int argc, char* argv[]) {
+  Table* table = new_table();
   InputBuffer* input_buffer = new_input_buffer();
   while (true) {
     print_prompt();
@@ -105,13 +203,22 @@ int main(int argc, char* argv[]) {
     switch (prepare_statement(input_buffer, &statement)) {
       case (PREPARE_SUCCESS):
         break;
+      case (PREPARE_SYNTAX_ERROR):
+        printf("Syntax error. Could not parse statement.\n");
+        continue;
       case (PREPARE_UNRECOGNIZED_STATEMENT):
         printf("Unrecognized keyword at start of '%s'.\n",
                input_buffer->buffer);
         continue;
     }

-    execute_statement(&statement);
-    printf("Executed.\n");
+    switch (execute_statement(&statement, table)) {
+      case (EXECUTE_SUCCESS):
+        printf("Executed.\n");
+        break;
+      case (EXECUTE_TABLE_FULL):
+        printf("Error: Table full.\n");
+        break;
+    }
   }
 }

有了这些修改后,我们已经可以在数据库中保存数据了!

~ ./db
db > insert 1 cstack foo@bar.com
Executed.
db > insert 2 bob bob@example.com
Executed.
db > select
(1, cstack, foo@bar.com)
(2, bob, bob@example.com)
Executed.
db > insert foo bar 1
Syntax error. Could not parse statement.
db > .exit
~

现在是测试的好时机,原因如下:

  • 我们计划大幅度修改用来存储表的数据结构,测试将发现回归
  • 有几个边缘情况我们没有手动测试(例如,填满整个表)

我们将在下部分中解决这些问题,现在展示这部分代码的完整区别:

@@ -2,6 +2,7 @@
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
+#include <stdint.h>

 typedef struct {
   char* buffer;
@@ -10,6 +11,105 @@ typedef struct {
 } InputBuffer;

+typedef enum { EXECUTE_SUCCESS, EXECUTE_TABLE_FULL } ExecuteResult;
+
+typedef enum {
+  META_COMMAND_SUCCESS,
+  META_COMMAND_UNRECOGNIZED_COMMAND
+} MetaCommandResult;
+
+typedef enum {
+  PREPARE_SUCCESS,
+  PREPARE_SYNTAX_ERROR,
+  PREPARE_UNRECOGNIZED_STATEMENT
+ } PrepareResult;
+
+typedef enum { STATEMENT_INSERT, STATEMENT_SELECT } StatementType;
+
+#define COLUMN_USERNAME_SIZE 32
+#define COLUMN_EMAIL_SIZE 255
+typedef struct {
+  uint32_t id;
+  char username[COLUMN_USERNAME_SIZE];
+  char email[COLUMN_EMAIL_SIZE];
+} Row;
+
+typedef struct {
+  StatementType type;
+  Row row_to_insert; //only used by insert statement
+} Statement;
+
+#define size_of_attribute(Struct, Attribute) sizeof(((Struct*)0)->Attribute)
+
+const uint32_t ID_SIZE = size_of_attribute(Row, id);
+const uint32_t USERNAME_SIZE = size_of_attribute(Row, username);
+const uint32_t EMAIL_SIZE = size_of_attribute(Row, email);
+const uint32_t ID_OFFSET = 0;
+const uint32_t USERNAME_OFFSET = ID_OFFSET + ID_SIZE;
+const uint32_t EMAIL_OFFSET = USERNAME_OFFSET + USERNAME_SIZE;
+const uint32_t ROW_SIZE = ID_SIZE + USERNAME_SIZE + EMAIL_SIZE;
+
+const uint32_t PAGE_SIZE = 4096;
+#define TABLE_MAX_PAGES 100
+const uint32_t ROWS_PER_PAGE = PAGE_SIZE / ROW_SIZE;
+const uint32_t TABLE_MAX_ROWS = ROWS_PER_PAGE * TABLE_MAX_PAGES;
+
+typedef struct {
+  uint32_t num_rows;
+  void* pages[TABLE_MAX_PAGES];
+} Table;
+
+void print_row(Row* row) {
+  printf("(%d, %s, %s)\n", row->id, row->username, row->email);
+}
+
+void serialize_row(Row* source, void* destination) {
+  memcpy(destination + ID_OFFSET, &(source->id), ID_SIZE);
+  memcpy(destination + USERNAME_OFFSET, &(source->username), USERNAME_SIZE);
+  memcpy(destination + EMAIL_OFFSET, &(source->email), EMAIL_SIZE);
+}
+
+void deserialize_row(void *source, Row* destination) {
+  memcpy(&(destination->id), source + ID_OFFSET, ID_SIZE);
+  memcpy(&(destination->username), source + USERNAME_OFFSET, USERNAME_SIZE);
+  memcpy(&(destination->email), source + EMAIL_OFFSET, EMAIL_SIZE);
+}
+
+void* row_slot(Table* table, uint32_t row_num) {
+  uint32_t page_num = row_num / ROWS_PER_PAGE;
+  void *page = table->pages[page_num];
+  if (page == NULL) {
+     // Allocate memory only when we try to access page
+     page = table->pages[page_num] = malloc(PAGE_SIZE);
+  }
+  uint32_t row_offset = row_num % ROWS_PER_PAGE;
+  uint32_t byte_offset = row_offset * ROW_SIZE;
+  return page + byte_offset;
+}
+
+Table* new_table() {
+  Table* table = (Table*)malloc(sizeof(Table));
+  table->num_rows = 0;
+  for (uint32_t i = 0; i < TABLE_MAX_PAGES; i++) {
+     table->pages[i] = NULL;
+  }
+  return table;
+}
+
+void free_table(Table* table) {
+  for (int i = 0; table->pages[i]; i++) {
+     free(table->pages[i]);
+  }
+  free(table);
+}
+
 InputBuffer* new_input_buffer() {
   InputBuffer* input_buffer = (InputBuffer*)malloc(sizeof(InputBuffer));
   input_buffer->buffer = NULL;
@@ -40,17 +140,105 @@ void close_input_buffer(InputBuffer* input_buffer) {
     free(input_buffer);
 }

+MetaCommandResult do_meta_command(InputBuffer* input_buffer, Table *table) {
+  if (strcmp(input_buffer->buffer, ".exit") == 0) {
+    close_input_buffer(input_buffer);
+    free_table(table);
+    exit(EXIT_SUCCESS);
+  } else {
+    return META_COMMAND_UNRECOGNIZED_COMMAND;
+  }
+}
+
+PrepareResult prepare_statement(InputBuffer* input_buffer,
+                                Statement* statement) {
+  if (strncmp(input_buffer->buffer, "insert", 6) == 0) {
+    statement->type = STATEMENT_INSERT;
+    int args_assigned = sscanf(
+	input_buffer->buffer, "insert %d %s %s", &(statement->row_to_insert.id),
+	statement->row_to_insert.username, statement->row_to_insert.email
+	);
+    if (args_assigned < 3) {
+	return PREPARE_SYNTAX_ERROR;
+    }
+    return PREPARE_SUCCESS;
+  }
+  if (strcmp(input_buffer->buffer, "select") == 0) {
+    statement->type = STATEMENT_SELECT;
+    return PREPARE_SUCCESS;
+  }
+
+  return PREPARE_UNRECOGNIZED_STATEMENT;
+}
+
+ExecuteResult execute_insert(Statement* statement, Table* table) {
+  if (table->num_rows >= TABLE_MAX_ROWS) {
+     return EXECUTE_TABLE_FULL;
+  }
+
+  Row* row_to_insert = &(statement->row_to_insert);
+
+  serialize_row(row_to_insert, row_slot(table, table->num_rows));
+  table->num_rows += 1;
+
+  return EXECUTE_SUCCESS;
+}
+
+ExecuteResult execute_select(Statement* statement, Table* table) {
+  Row row;
+  for (uint32_t i = 0; i < table->num_rows; i++) {
+     deserialize_row(row_slot(table, i), &row);
+     print_row(&row);
+  }
+  return EXECUTE_SUCCESS;
+}
+
+ExecuteResult execute_statement(Statement* statement, Table *table) {
+  switch (statement->type) {
+    case (STATEMENT_INSERT):
+       	return execute_insert(statement, table);
+    case (STATEMENT_SELECT):
+	return execute_select(statement, table);
+  }
+}
+
 int main(int argc, char* argv[]) {
+  Table* table = new_table();
   InputBuffer* input_buffer = new_input_buffer();
   while (true) {
     print_prompt();
     read_input(input_buffer);

-    if (strcmp(input_buffer->buffer, ".exit") == 0) {
-      close_input_buffer(input_buffer);
-      exit(EXIT_SUCCESS);
-    } else {
-      printf("Unrecognized command '%s'.\n", input_buffer->buffer);
+    if (input_buffer->buffer[0] == '.') {
+      switch (do_meta_command(input_buffer, table)) {
+        case (META_COMMAND_SUCCESS):
+          continue;
+        case (META_COMMAND_UNRECOGNIZED_COMMAND):
+          printf("Unrecognized command '%s'\n", input_buffer->buffer);
+          continue;
+      }
+    }
+
+    Statement statement;
+    switch (prepare_statement(input_buffer, &statement)) {
+      case (PREPARE_SUCCESS):
+        break;
+      case (PREPARE_SYNTAX_ERROR):
+	printf("Syntax error. Could not parse statement.\n");
+	continue;
+      case (PREPARE_UNRECOGNIZED_STATEMENT):
+        printf("Unrecognized keyword at start of '%s'.\n",
+               input_buffer->buffer);
+        continue;
+    }
+
+    switch (execute_statement(&statement, table)) {
+	case (EXECUTE_SUCCESS):
+	    printf("Executed.\n");
+	    break;
+	case (EXECUTE_TABLE_FULL):
+	    printf("Error: Table full.\n");
+	    break;
     }
   }
 }