版权归原作者所有。
问题描述
最近看了一个虚机的 CPU 使用情况,使用 mpstat -P ALL
命令查看系统的 CPU 情况 (该系统只有一个 CPU core),发现该 CPU 的 %usr
长期维持在 70% 左右,且 %sys
也长期维持在 20% 左右:
03:56:29 AM CPU %usr %nice %sys %iowait %irq %soft %steal %guest %gnice %idle
03:56:34 AM all 67.11 0.00 24.83 0.00 0.00 8.05 0.00 0.00 0.00 0.00
03:56:34 AM 0 67.11 0.00 24.83 0.00 0.00 8.05 0.00 0.00 0.00 0.00
mpstat 命令展示的 CPU 结果和 top 命令一致
但通过 Grafana 查看发现该机器的 %usr
和 %sys
均低于实际情况。如下图棕色曲线为 usr
,蓝色曲线为 sys
:
Grafana 的表达式如下:
avg by (mode, instance) (irate(node_cpu_seconds_total{instance=~"$instance", mode=~"user|system|iowait"}[$__rate_interval]))
问题解决
尝试解决
一开始怀疑是 node-exporter 版本问题,但查看 node-exporter 的 release notes 并没有相关 bug,在切换为最新版本之后,问题也没有解决。
调研 node-exporter 运作方式
大部分与系统相关的 prometheus 指标都是直接从系统指标文件中读取并转换过来的。node-exporter 中与 CPU 相关的指标就读取自 /proc/stat
,其中与 CPU 相关的内容就是下面的前两行,每行十列数据,分别表示 User
、Nice
、System
、Idle
、Iowait
、IRQ SoftIRQ
、Steal
、 Guest
、GuestNice
# cat /proc/stat
cpu 18651720 282843 9512262 493780943 10294540 0 2239778 0 0 0
cpu0 18651720 282843 9512262 493780943 10294540 0 2239778 0 0 0
intr 227141952 99160476 9 0 0 2772 0 0 0 0 0 0 0 157 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ctxt 4027171429
btime 1671775036
processes 14260129
procs_running 5
procs_blocked 0
softirq 1727699538 0 816653671 1 233469155 45823320 0 52888978 0 0 578864413
node-exporter
并没有做什么运算,它只是将这十列数据除以 userHZ
(100),打上 mode
标签之后转换为 prometheus 格式的指标:
node_cpu_seconds_total{cpu="0", instance="redis:9100", mode="user"} 244328.77
mpstat 命令的计算方式
那 mpstat 是如何计算不同 mode 的 CPU 利用率呢?
在 mpstat 的源代码[1]中可以看到,mode 为 User
的计算方式如下,涉及三个参数:
scc
: 当前采样到的 CPU 信息,对应/proc/stat
中的 CPU 信息scp
: 上一次采样到的 CPU 信息,对应/proc/stat
中的 CPU 信息deltot_jiffies
: 两次 CPU 采样之间的 jiffies(下面介绍什么是 jiffies)
ll_sp_value(scp->cpu_user - scp->cpu_guest,
scc->cpu_user - scc->cpu_guest, deltot_jiffies)
ll_sp_value
函数的定义如下,它使用了宏定义 SP_VALUE
:
/*
***************************************************************************
* Workaround for CPU counters read from /proc/stat: Dyn-tick kernels
* have a race issue that can make those counters go backward.
***************************************************************************
*/
double ll_sp_value(unsigned long long value1, unsigned long long value2,
unsigned long long itv)
{
if (value2 < value1)
return (double) 0;
else
return SP_VALUE(value1, value2, itv);
}
SP_VALUE
的定义如下:
/* With S_VALUE macro, the interval of time (@p) is given in 1/100th of a second */
#define S_VALUE(m,n,p) (((double) ((n) - (m))) / (p) * 100)
/* Define SP_VALUE() to normalize to % */
#define SP_VALUE(m,n,p) (((double) ((n) - (m))) / (p) * 100)
/*
根据 SP_VALUE
定义可以看到两次 CPU 采样获取到的 mode 为 User
的 CPU 占用率计算方式为:(((double) ((scp->cpu_user - scp->cpu_guest) - (scp->cpu_user - scp->cpu_guest))) / (deltot_jiffies) * 100)
下面函数用于计算 deltot_jiffies
,可以看到 jiffies 其实就是 /proc/stat
中的 CPU 数值单位:
/*
***************************************************************************
* Since ticks may vary slightly from CPU to CPU, we'll want
* to recalculate itv based on this CPU's tick count, rather
* than that reported by the "cpu" line. Otherwise we
* occasionally end up with slightly skewed figures, with
* the skew being greater as the time interval grows shorter.
*
* IN:
* @scc Current sample statistics for current CPU.
* @scp Previous sample statistics for current CPU.
*
* RETURNS:
* Interval of time based on current CPU, expressed in jiffies.
*
* USED BY:
* sar, sadf, mpstat
***************************************************************************
*/
unsigned long long get_per_cpu_interval(struct stats_cpu *scc,
struct stats_cpu *scp)
{
unsigned long long ishift = 0LL;
if ((scc->cpu_user - scc->cpu_guest) < (scp->cpu_user - scp->cpu_guest)) {
/*
* Sometimes the nr of jiffies spent in guest mode given by the guest
* counter in /proc/stat is slightly higher than that included in
* the user counter. Update the interval value accordingly.
*/
ishift += (scp->cpu_user - scp->cpu_guest) -
(scc->cpu_user - scc->cpu_guest);
}
if ((scc->cpu_nice - scc->cpu_guest_nice) < (scp->cpu_nice - scp->cpu_guest_nice)) {
/*
* Idem for nr of jiffies spent in guest_nice mode.
*/
ishift += (scp->cpu_nice - scp->cpu_guest_nice) -
(scc->cpu_nice - scc->cpu_guest_nice);
}
/*
* Workaround for CPU coming back online: With recent kernels
* some fields (user, nice, system) restart from their previous value,
* whereas others (idle, iowait) restart from zero.
* For the latter we need to set their previous value to zero to
* avoid getting an interval value < 0.
* (I don't know how the other fields like hardirq, steal... behave).
* Don't assume the CPU has come back from offline state if previous
* value was greater than ULLONG_MAX - 0x7ffff (the counter probably
* overflew).
*/
if ((scc->cpu_iowait < scp->cpu_iowait) && (scp->cpu_iowait < (ULLONG_MAX - 0x7ffff))) {
/*
* The iowait value reported by the kernel can also decrement as
* a result of inaccurate iowait tracking. Waiting on IO can be
* first accounted as iowait but then instead as idle.
* Therefore if the idle value during the same period did not
* decrease then consider this is a problem with the iowait
* reporting and correct the previous value according to the new
* reading. Otherwise, treat this as CPU coming back online.
*/
if ((scc->cpu_idle > scp->cpu_idle) || (scp->cpu_idle >= (ULLONG_MAX - 0x7ffff))) {
scp->cpu_iowait = scc->cpu_iowait;
}
else {
scp->cpu_iowait = 0;
}
}
if ((scc->cpu_idle < scp->cpu_idle) && (scp->cpu_idle < (ULLONG_MAX - 0x7ffff))) {
scp->cpu_idle = 0;
}
/*
* Don't take cpu_guest and cpu_guest_nice into account
* because cpu_user and cpu_nice already include them.
*/
return ((scc->cpu_user + scc->cpu_nice +
scc->cpu_sys + scc->cpu_iowait +
scc->cpu_idle + scc->cpu_steal +
scc->cpu_hardirq + scc->cpu_softirq) -
(scp->cpu_user + scp->cpu_nice +
scp->cpu_sys + scp->cpu_iowait +
scp->cpu_idle + scp->cpu_steal +
scp->cpu_hardirq + scp->cpu_softirq) +
ishift);
}
从上面计算方式可以看到,deltot_jiffies
近似可以认为是两次 CPU 采样的所有 mode 总和之差,以下表为例:
User Nice System Idle Iowait IRQ SoftIRQ Steal Guest GuestNice
cpu 18424040 281581 9443941 493688502 10284789 0 2221013 0 0 0 # 第一次采样,作为scp
cpu 18424137 281581 9443954 493688502 10284789 0 2221020 0 0 0 # 第二次采样,作为scc
deltot_jiffies
的计算方式为:
(18424137+281581+9443954+493688502+10284789) - (18424040+281581+9443941+493688502+2221013) + 0 = 117
那么根据采样到的数据,可以得出当前虚拟上的 mode 为 User
的 CPU 占用率为:(((double) ((18424137 - 0) - (18424040 - 0))) / (117) * 100)=82.9%
,与预期相符。
再回头看下出问题的 Grafana 表达式,可以看出其计算的是 mode 为 User
的 CPU 的变动趋势,而不是 CPU 占用率,按照 mpstat 的计算方式,该 mode 的占用率的近似计算方式如下:
increase(node_cpu_seconds_total{mode="user", instance="drg1-prd-dragon-redis-sentinel-data-1:9100"}[10m])/on (cpu,instance)(increase(node_cpu_seconds_total{mode="user", instance="drg1-prd-dragon-redis-sentinel-data-1:9100"}[10m])+ on (cpu,instance) increase(node_cpu_seconds_total{mode="system", instance="drg1-prd-dragon-redis-sentinel-data-1:9100"}[10m]))
得出的 mode 为 User
的 CPU 占用率曲线图如下,与 mpstat 展示结果相同:
如果有必要的话,可以创建新的指标,用于准确表达 CPU 占用率。