一:JobSheduler的源码解析
1. JobScheduler是Spark Streaming整个调度的核心,相当于Spark Core上的DAGScheduler.
2. Spark Streaming为啥要设置两条线程?
setMaster指定的两条线程是指程序运行的时候至少需要两条线程。一条线程用于接收数据,需要不断的循环。而我们指定的线程数是用于作业处理的。
3. JobSheduler的启动是在StreamContext的start方法被调用的时候启动的。
def start(): Unit = synchronized { state match { case INITIALIZED => startSite.set(DStream.getCreationSite()) StreamingContext.ACTIVATION_LOCK.synchronized { StreamingContext.assertNoOtherContextIsActive() try { validate() //而这里面启动的新线程是调度方面的,因此和我们设置的线程数没有关系。 // Start the streaming scheduler in a new thread, so that thread local properties // like call sites and job groups can be reset without affecting those of the // current thread. ThreadUtils.runInNewThread("streaming-start") { sparkContext.setCallSite(startSite.get) sparkContext.clearJobGroup() sparkContext.setLocalProperty(SparkContext.SPARK_JOB_INTERRUPT_ON_CANCEL, "false") scheduler.start() }
4. jobScheduler会负责逻辑层面的Job,并将其物理级别的运行在Spark之上.
/** * This class schedules jobs to be run on Spark. It uses the JobGenerator to generate * the jobs and runs them using a thread pool. */private[streaming]class JobScheduler(val ssc: StreamingContext) extends Logging {
5. jobScheduler的start方法源码如下:
def start(): Unit = synchronized { if (eventLoop != null) return // scheduler has already been started logDebug("Starting JobScheduler") eventLoop = new EventLoop[JobSchedulerEvent]("JobScheduler") { override protected def onReceive(event: JobSchedulerEvent): Unit = processEvent(event) override protected def onError(e: Throwable): Unit = reportError("Error in job scheduler", e) } eventLoop.start() // attach rate controllers of input streams to receive batch completion updates for { inputDStream <- ssc.graph.getInputStreams rateController <- inputDStream.rateController } ssc.addStreamingListener(rateController) listenerBus.start(ssc.sparkContext) receiverTracker = new ReceiverTracker(ssc) inputInfoTracker = new InputInfoTracker(ssc) receiverTracker.start() jobGenerator.start() logInfo("Started JobScheduler") }
6. 其中processEvent的源码如下:
private def processEvent(event: JobSchedulerEvent) { try { event match { case JobStarted(job, startTime) => handleJobStart(job, startTime) case JobCompleted(job, completedTime) => handleJobCompletion(job, completedTime) case ErrorReported(m, e) => handleError(m, e) } } catch { case e: Throwable => reportError("Error in job scheduler", e) } }
7. handleJobStart的源码如下:
private def handleJobStart(job: Job, startTime: Long) { val jobSet = jobSets.get(job.time) val isFirstJobOfJobSet = !jobSet.hasStarted jobSet.handleJobStart(job) if (isFirstJobOfJobSet) { // "StreamingListenerBatchStarted" should be posted after calling "handleJobStart" to get the // correct "jobSet.processingStartTime". listenerBus.post(StreamingListenerBatchStarted(jobSet.toBatchInfo)) } job.setStartTime(startTime) listenerBus.post(StreamingListenerOutputOperationStarted(job.toOutputOperationInfo)) logInfo("Starting job " + job.id + " from job set of time " + jobSet.time) }
8. JobScheduler初始化的时候干了那些事?
此时为啥要设置并行度呢?
1) 如果Batch Duractions中有多个Output操作的话,提高并行度可以极大的提高性能。
2) 不同的Batch,线程池中有很多的线程,也可以并发运行。
将逻辑级别的Job转化为物理级别的job就是通过newDaemonFixedThreadPool线程实现的。
// Use of ConcurrentHashMap.keySet later causes an odd runtime problem due to Java 7/8 diff// https://gist.github.com/AlainODea/1375759b8720a3f9f094private val jobSets: java.util.Map[Time, JobSet] = new ConcurrentHashMap[Time, JobSet]//可以手动设置并行度private val numConcurrentJobs = ssc.conf.getInt("spark.streaming.concurrentJobs", 1)// numConcurrentJobs 默认是1private val jobExecutor = ThreadUtils.newDaemonFixedThreadPool(numConcurrentJobs, "streaming-job-executor")//初始化JoGeneratorprivate val jobGenerator = new JobGenerator(this)val clock = jobGenerator.clock//val listenerBus = new StreamingListenerBus()// These two are created only when scheduler starts.// eventLoop not being null means the scheduler has been started and not stoppedvar receiverTracker: ReceiverTracker = null123456789101112131415161718123456789101112131415161718
print的函数源码如下:
1. DStream中的print源码如下:
/** * Print the first ten elements of each RDD generated in this DStream. This is an output * operator, so this DStream will be registered as an output stream and there materialized. */def print(): Unit = ssc.withScope { print(10) }
2. 实际调用的时候还是对RDD进行操作。
/** * Print the first num elements of each RDD generated in this DStream. This is an output * operator, so this DStream will be registered as an output stream and there materialized. */def print(num: Int): Unit = ssc.withScope { def foreachFunc: (RDD[T], Time) => Unit = { (rdd: RDD[T], time: Time) => { val firstNum = rdd.take(num + 1) // scalastyle:off println println("-------------------------------------------") println("Time: " + time) println("-------------------------------------------") firstNum.take(num).foreach(println) if (firstNum.length > num) println("...") println() // scalastyle:on println } } foreachRDD(context.sparkContext.clean(foreachFunc), displayInnerRDDOps = false) }
3. foreachFunc封装了RDD的操作。
/** * Apply a function to each RDD in this DStream. This is an output operator, so * 'this' DStream will be registered as an output stream and therefore materialized. * @param foreachFunc foreachRDD function * @param displayInnerRDDOps Whether the detailed callsites and scopes of the RDDs generated * in the `foreachFunc` to be displayed in the UI. If `false`, then * only the scopes and callsites of `foreachRDD` will override those * of the RDDs on the display. */ private def foreachRDD( foreachFunc: (RDD[T], Time) => Unit, displayInnerRDDOps: Boolean): Unit = { new ForEachDStream(this, context.sparkContext.clean(foreachFunc, false), displayInnerRDDOps).register() }
4. 每个BatchDuractions都会根据generateJob生成作业。
/** * An internal DStream used to represent output operations like DStream.foreachRDD. * @param parent Parent DStream * @param foreachFunc Function to apply on each RDD generated by the parent DStream * @param displayInnerRDDOps Whether the detailed callsites and scopes of the RDDs generated * by `foreachFunc` will be displayed in the UI; only the scope and * callsite of `DStream.foreachRDD` will be displayed. */ private[streaming]class ForEachDStream[T: ClassTag] ( parent: DStream[T], foreachFunc: (RDD[T], Time) => Unit, displayInnerRDDOps: Boolean ) extends DStream[Unit](parent.ssc) { override def dependencies: List[DStream[_]] = List(parent) override def slideDuration: Duration = parent.slideDuration override def compute(validTime: Time): Option[RDD[Unit]] = None//每个Batch Duractions都根据generateJob生成Job override def generateJob(time: Time): Option[Job] = { parent.getOrCompute(time) match { case Some(rdd) => val jobFunc = () => createRDDWithLocalProperties(time, displayInnerRDDOps) { //foreachFunc基于rdd和time封装为func了,此时的foreachFunc就被job.run //的时候调用了。 //此时的RDD就是基于时间生成的RDD,这个RDD就是DStreamGraph中的最后一个DStream决定的。然后 foreachFunc(rdd, time) } Some(new Job(time, jobFunc)) case None => None } } }
5. 此时的foreachFunc是从哪里来的?
private[streaming] //参数传递过来的,这个时候就要去找forEachDStream在哪里被调用。 class ForEachDStream[T: ClassTag] ( parent: DStream[T], foreachFunc: (RDD[T], Time) => Unit, displayInnerRDDOps: Boolean ) extends DStream[Unit](parent.ssc) {
6. 由此可以知道真正Job的生成是通过ForeachDStream通generateJob来生成的,此时是逻辑级别的,但是真正被物理级别的调用是在JobGenerator中generateJobs被调用的。
def generateJobs(time: Time): Seq[Job] = { logDebug("Generating jobs for time " + time) val jobs = this.synchronized { //此时的outputStream就是forEachDStream outputStreams.flatMap { outputStream => val jobOption = outputStream.generateJob(time) jobOption.foreach(_.setCallSite(outputStream.creationSite)) jobOption } } logDebug("Generated " + jobs.length + " jobs for time " + time) jobs }
6. 由此可以知道真正Job的生成是通过ForeachDStream通过generateJob来生成的,此时是逻辑级别的,但是真正被物理级别的调用是在JobGenerator中generateJobs被调用的。
def generateJobs(time: Time): Seq[Job] = { logDebug("Generating jobs for time " + time) val jobs = this.synchronized { //此时的outputStream就是forEachDStream outputStreams.flatMap { outputStream => val jobOption = outputStream.generateJob(time) jobOption.foreach(_.setCallSite(outputStream.creationSite)) jobOption } } logDebug("Generated " + jobs.length + " jobs for time " + time) jobs }
备注:
1、DT大数据梦工厂微信公众号DT_Spark
2、IMF晚8点大数据实战YY直播频道号:68917580
3、新浪微博: http://www.weibo.com/ilovepains
本文转自http://blog.csdn.net/snail_gesture/article/details/51417769