可迭代对象

1、列表生成式

list = [result for x in range(m, n)]

g1 = (i for i in range(101))
print(type(g1))
print(g1)
print(g1.__next__())
输出:
<class 'generator'>
<generator object <genexpr> at 0x0000024E6AC08F10>
0

g1 = (i for i in range(11))
list1 = [i for i in g1]
print(list1)
输出:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]	

2、可迭代对象

1.可以直接作用于for循环的对象统称为可迭代对象,我们称之为:Iterator
2.我们可以使用isintance()判断一个对象是否是Iterator对象
3.可以直接作用于for循环的数据类型有以下几种
a.集合数据类型:如list、tuple、dict、set和string
b.生成器(generator):就是一个能返回迭代器的函数,其实就是定义一个迭代算法,可以理解为一个特殊的迭代器
生成器:
通过列表生成式,我们可以直接创建一个列表,但是,受到内存限制,列表容量肯定是有限的,如果我们仅仅需要访问前面几个元素,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器(Generator)

要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator。

g1 = (i for i in range(11))
print(g1)
for i in range(11):
    print(next(g1),end='\t')
输出:
<generator object <genexpr> at 0x00000207F5C69678>
0	1	2	3	4	5	6	7	8	9	10	

注意:使用Iterator判断的时候需要导入Iterable的包

from collections import  Iterable
print(isinstance([],Iterable))
print(isinstance((),Iterable))
print(isinstance("",Iterable))
print(isinstance({},Iterable))
print(isinstance({1,2,3},Iterable))
print({1,2,3})
print(isinstance(1,Iterable))
print(isinstance(1.2,Iterable))
g1 = (i for i in range(101))
print(isinstance(g1,Iterable))
输出:
True
True
True
True
True
{1, 2, 3}
False
False
True

3、迭代器

迭代器:不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,
直到最后出现StopIteration错误,表示无法返回下一个值
可以被next()函数调用并不断返回下一个值的对象称为迭代器(Iterator对象)
可以使用isinstance()函数判断一个对象是否是Iterator对象。

注意:可迭代对象不一定是迭代器,但是迭代器一定是迭代对象。
可迭代对象与迭代器的关系:
可迭代对象包含迭代器

from collections import  Iterator
print(isinstance([],Iterator))
print(isinstance((),Iterator))
print(isinstance("",Iterator))
print(isinstance({},Iterator))
print(isinstance({1,2,3},Iterator))
print({1,2,3})
print(isinstance(1,Iterator))
print(isinstance(1.2,Iterator))
g1 = (i for i in range(101))
print(isinstance(g1,Iterator))
输出:
False
False
False
False
False
{1, 2, 3}
False
False
True

4、生成器

跟普通函数不同的是,生成器是一个返回迭代器的函数,只能用于迭代操作,更简单点理解生成器就是一个迭代器。

在调用生成器运行的过程中,每次遇到 yield 时函数会暂停并保存当前所有的运行信息,返回 yield 的值, 并在下一次执行 next() 方法时从当前位置继续运行。

调用一个生成器函数,返回的是一个迭代器对象。

以下实例使用 yield 实现斐波那契数列:
生成器:使用了 yield 的函数被称为生成器(generator)

import sys


def fibonacci(n):  # 生成器函数 - 斐波那契
    a, b, counter = 0, 1, 0
    while True:
        if counter > n:
            return
        yield a
        a, b = b, a + b
        counter += 1


if __name__ == '__main__':
    f = fibonacci(10)  # f 是一个迭代器,由生成器返回生成
    while True:
        try:
            print(next(f), end=" ")
        except StopIteration:
            sys.exit()

输出:

0 1 1 2 3 5 8 13 21 34 55 

5、 Iterator转换

可以通过Iter()函数将list、tuple、dict、string转换为Iterator对象。

from collections import  Iterator
list1 = [i for i in range(11)]
print(isinstance(list1,Iterator))
iter1 = iter(list1)
print(isinstance(iter1,Iterator))
for i in range(11):
    print(next(iter1),end='\t')
输出:
False
True
0	1	2	3	4	5	6	7	8	9	10	

 

python中可迭代对象、迭代器、生成器_python