k-折交叉验证(k-fold crossValidation):在机器学习中,将数据集A分为训练集(training set)B和测试集(testset)C,在样本量不充足的情况下,为了充分利用数据集对算法效果进行测试,将数据集A随机分为k个包,每次将其中一个包作为测试集,剩下k-1个包作为训练集进行训练。在matlab中,可以利用:indices=crossvalind('Kfold',x,k)
交叉验证(Cross-validation)主要用于建模应用中,例如PCR 、PLS回归建模中。在给定的建模样本中,拿出大部分样本进行建模型,留小部分样本用刚建立的模型进行预报,并求这小部分样本的预报误差,记录它们的平方加和。这个过程一直进行,直到所有的样本都被预报了一次而且仅被预报一次。把每个样本的预报误差平方加和,称为PRESS(predictedError Sum of Squares)。
Copyright © 2005-2024 51CTO.COM 版权所有 京ICP证060544号